Description: Biconditional version of elsng . (Contributed by BJ, 18-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-elsnb | |- ( A e. { B } <-> ( A e. _V /\ A = B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex |  |-  ( A e. { B } -> A e. _V ) | |
| 2 | elsng |  |-  ( A e. _V -> ( A e. { B } <-> A = B ) ) | |
| 3 | 1 2 | biadanii |  |-  ( A e. { B } <-> ( A e. _V /\ A = B ) ) |