Description: Biconditional version of elsng . (Contributed by BJ, 18-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-elsnb | |- ( A e. { B } <-> ( A e. _V /\ A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. { B } -> A e. _V ) |
|
2 | elsng | |- ( A e. _V -> ( A e. { B } <-> A = B ) ) |
|
3 | 1 2 | biadanii | |- ( A e. { B } <-> ( A e. _V /\ A = B ) ) |