Metamath Proof Explorer


Theorem bj-elsnb

Description: Biconditional version of elsng . (Contributed by BJ, 18-Nov-2023)

Ref Expression
Assertion bj-elsnb A B A V A = B

Proof

Step Hyp Ref Expression
1 elex A B A V
2 elsng A V A B A = B
3 1 2 biadanii A B A V A = B