Metamath Proof Explorer


Theorem bj-elsnb

Description: Biconditional version of elsng . (Contributed by BJ, 18-Nov-2023)

Ref Expression
Assertion bj-elsnb ( 𝐴 ∈ { 𝐵 } ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ { 𝐵 } → 𝐴 ∈ V )
2 elsng ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
3 1 2 biadanii ( 𝐴 ∈ { 𝐵 } ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )