Metamath Proof Explorer


Theorem bj-pwcfsdom

Description: Remove hypothesis from pwcfsdom . Illustration of how to remove a "proof-facilitating hypothesis". (Can use it to shorten theorems using pwcfsdom .) (Contributed by BJ, 14-Sep-2019)

Ref Expression
Assertion bj-pwcfsdom ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓𝑦 ) ) ) = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓𝑦 ) ) )
2 1 pwcfsdom ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) )