| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwcfsdom.1 |
⊢ 𝐻 = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 2 |
|
onzsl |
⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 3 |
2
|
biimpi |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 4 |
|
cfom |
⊢ ( cf ‘ ω ) = ω |
| 5 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
| 6 |
5
|
fveq2i |
⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( cf ‘ ω ) |
| 7 |
4 6 5
|
3eqtr4i |
⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( ℵ ‘ ∅ ) |
| 8 |
|
2fveq3 |
⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ ∅ ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ ∅ ) ) |
| 10 |
7 8 9
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 11 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
| 12 |
11
|
canth2 |
⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
| 13 |
11
|
pw2en |
⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 14 |
|
sdomentr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 16 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| 17 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 |
|
omelon |
⊢ ω ∈ On |
| 19 |
|
2onn |
⊢ 2o ∈ ω |
| 20 |
|
onelss |
⊢ ( ω ∈ On → ( 2o ∈ ω → 2o ⊆ ω ) ) |
| 21 |
18 19 20
|
mp2 |
⊢ 2o ⊆ ω |
| 22 |
|
sstr |
⊢ ( ( 2o ⊆ ω ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 23 |
21 22
|
mpan |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 24 |
17 23
|
sylbi |
⊢ ( 𝐴 ∈ On → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 25 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( 2o ⊆ ( ℵ ‘ 𝐴 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 26 |
16 24 25
|
mpsyl |
⊢ ( 𝐴 ∈ On → 2o ≼ ( ℵ ‘ 𝐴 ) ) |
| 27 |
|
mapdom1 |
⊢ ( 2o ≼ ( ℵ ‘ 𝐴 ) → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝐴 ∈ On → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 29 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 30 |
15 28 29
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 31 |
|
oveq2 |
⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 32 |
31
|
breq2d |
⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 33 |
30 32
|
syl5ibrcom |
⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 34 |
10 33
|
syl5 |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 35 |
|
alephreg |
⊢ ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) = ( ℵ ‘ suc 𝑥 ) |
| 36 |
|
2fveq3 |
⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ suc 𝑥 ) ) |
| 38 |
35 36 37
|
3eqtr4a |
⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 39 |
38
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
| 40 |
39 33
|
syl5 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 41 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
| 42 |
|
ffn |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
| 43 |
|
fnrnfv |
⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ran 𝑓 = { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
| 44 |
43
|
unieqd |
⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
| 45 |
42 44
|
syl |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
| 46 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
| 47 |
46
|
dfiun2 |
⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } |
| 48 |
45 47
|
eqtr4di |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
| 50 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) |
| 51 |
42 50
|
sylan |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) |
| 52 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑤 ) → ( 𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 54 |
51 53
|
sylan |
⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 55 |
54
|
rexlimdva2 |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 56 |
55
|
ralimdv |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 57 |
56
|
imp |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
| 59 |
|
alephislim |
⊢ ( 𝐴 ∈ On ↔ Lim ( ℵ ‘ 𝐴 ) ) |
| 60 |
59
|
biimpi |
⊢ ( 𝐴 ∈ On → Lim ( ℵ ‘ 𝐴 ) ) |
| 61 |
|
frn |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) |
| 63 |
|
coflim |
⊢ ( ( Lim ( ℵ ‘ 𝐴 ) ∧ ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 64 |
60 62 63
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
| 65 |
58 64
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ) |
| 66 |
49 65
|
eqtr3d |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
| 67 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 68 |
16
|
oneli |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ On ) |
| 69 |
|
harcard |
⊢ ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 70 |
|
iscard |
⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 71 |
70
|
simprbi |
⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 72 |
69 71
|
ax-mp |
⊢ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 73 |
|
domrefg |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) |
| 74 |
46 73
|
ax-mp |
⊢ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) |
| 75 |
|
elharval |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) |
| 76 |
75
|
biimpri |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 77 |
74 76
|
mpan2 |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 79 |
78
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 80 |
72 77 79
|
mpsyl |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 81 |
67 68 80
|
3syl |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 82 |
|
harcl |
⊢ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On |
| 83 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( har ‘ ( 𝑓 ‘ 𝑦 ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 84 |
83 1
|
fvmptg |
⊢ ( ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 85 |
82 84
|
mpan2 |
⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 86 |
85
|
breq2d |
⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 88 |
81 87
|
mpbird |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
| 89 |
88
|
ralrimiva |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
| 90 |
|
fvex |
⊢ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∈ V |
| 91 |
|
eqid |
⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) |
| 92 |
|
eqid |
⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) = X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) |
| 93 |
90 91 92
|
konigth |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 94 |
89 93
|
syl |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 95 |
94
|
ad2antrl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 96 |
66 95
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 97 |
41 96
|
sylan |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
| 98 |
|
ovex |
⊢ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V |
| 99 |
67
|
ex |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 100 |
|
alephlim |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) |
| 101 |
100
|
eleq2d |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) ) |
| 102 |
|
eliun |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) |
| 103 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) |
| 104 |
103
|
eleq2i |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) |
| 105 |
|
cardsdomelir |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 106 |
104 105
|
sylbir |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 107 |
|
elharval |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( ℵ ‘ 𝑦 ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) |
| 108 |
107
|
simprbi |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) |
| 109 |
|
domnsym |
⊢ ( ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 110 |
108 109
|
syl |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
| 111 |
110
|
con2i |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 112 |
|
alephon |
⊢ ( ℵ ‘ 𝑦 ) ∈ On |
| 113 |
|
ontri1 |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ∈ On ) → ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 114 |
82 112 113
|
mp2an |
⊢ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 115 |
111 114
|
sylibr |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
| 116 |
106 115
|
syl |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
| 117 |
|
alephord2i |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 118 |
117
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 119 |
|
ontr2 |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ On ) → ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 120 |
82 16 119
|
mp2an |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 121 |
116 118 120
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 122 |
121
|
rexlimdva2 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 123 |
102 122
|
biimtrid |
⊢ ( 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 124 |
41 123
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 125 |
101 124
|
sylbid |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 126 |
99 125
|
sylan9r |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 127 |
126
|
imp |
⊢ ( ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 128 |
83
|
cbvmptv |
⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 129 |
1 128
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 130 |
127 129
|
fmptd |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) |
| 131 |
|
ffvelcdm |
⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 132 |
|
onelss |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 133 |
16 131 132
|
mpsyl |
⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 134 |
133
|
ralrimiva |
⊢ ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 135 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) ) |
| 136 |
90 11
|
ixpconst |
⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) = ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
| 137 |
135 136
|
sseqtrdi |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 138 |
130 134 137
|
3syl |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 139 |
|
ssdomg |
⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V → ( X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 140 |
98 138 139
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 141 |
140
|
adantrr |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 142 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ∧ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 143 |
97 141 142
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 144 |
143
|
expcom |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 145 |
144
|
3adant2 |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 146 |
|
cfsmo |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 147 |
16 146
|
ax-mp |
⊢ ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 148 |
145 147
|
exlimiiv |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 149 |
148
|
a1i |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 150 |
34 40 149
|
3jaod |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 151 |
3 150
|
mpd |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 152 |
|
alephfnon |
⊢ ℵ Fn On |
| 153 |
152
|
fndmi |
⊢ dom ℵ = On |
| 154 |
153
|
eleq2i |
⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 155 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 156 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 157 |
|
1oex |
⊢ 1o ∈ V |
| 158 |
157
|
0sdom |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 159 |
156 158
|
mpbir |
⊢ ∅ ≺ 1o |
| 160 |
|
id |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 161 |
|
fveq2 |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
| 162 |
|
cf0 |
⊢ ( cf ‘ ∅ ) = ∅ |
| 163 |
161 162
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ∅ ) |
| 164 |
160 163
|
oveq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ∅ ↑m ∅ ) ) |
| 165 |
|
0ex |
⊢ ∅ ∈ V |
| 166 |
|
map0e |
⊢ ( ∅ ∈ V → ( ∅ ↑m ∅ ) = 1o ) |
| 167 |
165 166
|
ax-mp |
⊢ ( ∅ ↑m ∅ ) = 1o |
| 168 |
164 167
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
| 169 |
160 168
|
breq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ∅ ≺ 1o ) ) |
| 170 |
159 169
|
mpbiri |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 171 |
155 170
|
syl |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 172 |
154 171
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 173 |
151 172
|
pm2.61i |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |