Step |
Hyp |
Ref |
Expression |
1 |
|
pwcfsdom.1 |
⊢ 𝐻 = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
2 |
|
onzsl |
⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
3 |
2
|
biimpi |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
4 |
|
cfom |
⊢ ( cf ‘ ω ) = ω |
5 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
6 |
5
|
fveq2i |
⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( cf ‘ ω ) |
7 |
4 6 5
|
3eqtr4i |
⊢ ( cf ‘ ( ℵ ‘ ∅ ) ) = ( ℵ ‘ ∅ ) |
8 |
|
2fveq3 |
⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ ∅ ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ ∅ ) ) |
10 |
7 8 9
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
11 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
12 |
11
|
canth2 |
⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
13 |
11
|
pw2en |
⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
14 |
|
sdomentr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
16 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
17 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
18 |
|
omelon |
⊢ ω ∈ On |
19 |
|
2onn |
⊢ 2o ∈ ω |
20 |
|
onelss |
⊢ ( ω ∈ On → ( 2o ∈ ω → 2o ⊆ ω ) ) |
21 |
18 19 20
|
mp2 |
⊢ 2o ⊆ ω |
22 |
|
sstr |
⊢ ( ( 2o ⊆ ω ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
23 |
21 22
|
mpan |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
24 |
17 23
|
sylbi |
⊢ ( 𝐴 ∈ On → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
25 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( 2o ⊆ ( ℵ ‘ 𝐴 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) ) |
26 |
16 24 25
|
mpsyl |
⊢ ( 𝐴 ∈ On → 2o ≼ ( ℵ ‘ 𝐴 ) ) |
27 |
|
mapdom1 |
⊢ ( 2o ≼ ( ℵ ‘ 𝐴 ) → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝐴 ∈ On → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
29 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
30 |
15 28 29
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
31 |
|
oveq2 |
⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) |
32 |
31
|
breq2d |
⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
33 |
30 32
|
syl5ibrcom |
⊢ ( 𝐴 ∈ On → ( ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
34 |
10 33
|
syl5 |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
35 |
|
alephreg |
⊢ ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) = ( ℵ ‘ suc 𝑥 ) |
36 |
|
2fveq3 |
⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ( ℵ ‘ suc 𝑥 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ suc 𝑥 ) ) |
38 |
35 36 37
|
3eqtr4a |
⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
39 |
38
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) ) |
40 |
39 33
|
syl5 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
41 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
42 |
|
ffn |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
43 |
|
fnrnfv |
⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ran 𝑓 = { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
44 |
43
|
unieqd |
⊢ ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
45 |
42 44
|
syl |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } ) |
46 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
47 |
46
|
dfiun2 |
⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦 = ( 𝑓 ‘ 𝑥 ) } |
48 |
45 47
|
eqtr4di |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
49 |
48
|
ad2antrl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) |
50 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) |
51 |
42 50
|
sylan |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ) |
52 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑤 ) → ( 𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( ( 𝑓 ‘ 𝑤 ) ∈ ran 𝑓 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
54 |
51 53
|
sylan |
⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
55 |
54
|
rexlimdva2 |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
56 |
55
|
ralimdv |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
57 |
56
|
imp |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
58 |
57
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) |
59 |
|
alephislim |
⊢ ( 𝐴 ∈ On ↔ Lim ( ℵ ‘ 𝐴 ) ) |
60 |
59
|
biimpi |
⊢ ( 𝐴 ∈ On → Lim ( ℵ ‘ 𝐴 ) ) |
61 |
|
frn |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) |
63 |
|
coflim |
⊢ ( ( Lim ( ℵ ‘ 𝐴 ) ∧ ran 𝑓 ⊆ ( ℵ ‘ 𝐴 ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
64 |
60 62 63
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦 ) ) |
65 |
58 64
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 = ( ℵ ‘ 𝐴 ) ) |
66 |
49 65
|
eqtr3d |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
67 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) |
68 |
16
|
oneli |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ On ) |
69 |
|
harcard |
⊢ ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) |
70 |
|
iscard |
⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
71 |
70
|
simprbi |
⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
72 |
69 71
|
ax-mp |
⊢ ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) |
73 |
|
domrefg |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) |
74 |
46 73
|
ax-mp |
⊢ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) |
75 |
|
elharval |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) |
76 |
75
|
biimpri |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ On ∧ ( 𝑓 ‘ 𝑥 ) ≼ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
77 |
74 76
|
mpan2 |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
78 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
79 |
78
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦 ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
80 |
72 77 79
|
mpsyl |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ On → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
81 |
67 68 80
|
3syl |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
82 |
|
harcl |
⊢ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On |
83 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( har ‘ ( 𝑓 ‘ 𝑦 ) ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
84 |
83 1
|
fvmptg |
⊢ ( ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∧ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
85 |
82 84
|
mpan2 |
⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) = ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
86 |
85
|
breq2d |
⊢ ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≺ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
88 |
81 87
|
mpbird |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
89 |
88
|
ralrimiva |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) ) |
90 |
|
fvex |
⊢ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ∈ V |
91 |
|
eqid |
⊢ ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) = ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) |
92 |
|
eqid |
⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) = X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) |
93 |
90 91 92
|
konigth |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ ( 𝐻 ‘ 𝑥 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
94 |
89 93
|
syl |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
95 |
94
|
ad2antrl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
96 |
66 95
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
97 |
41 96
|
sylan |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) |
98 |
|
ovex |
⊢ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V |
99 |
67
|
ex |
⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
100 |
|
alephlim |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) |
101 |
100
|
eleq2d |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) ) |
102 |
|
eliun |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) |
103 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) |
104 |
103
|
eleq2i |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) |
105 |
|
cardsdomelir |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( card ‘ ( ℵ ‘ 𝑦 ) ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
106 |
104 105
|
sylbir |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
107 |
|
elharval |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( ℵ ‘ 𝑦 ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) ) |
108 |
107
|
simprbi |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) ) |
109 |
|
domnsym |
⊢ ( ( ℵ ‘ 𝑦 ) ≼ ( 𝑓 ‘ 𝑥 ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
110 |
108 109
|
syl |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) → ¬ ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) ) |
111 |
110
|
con2i |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
112 |
|
alephon |
⊢ ( ℵ ‘ 𝑦 ) ∈ On |
113 |
|
ontri1 |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝑦 ) ∈ On ) → ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
114 |
82 112 113
|
mp2an |
⊢ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ↔ ¬ ( ℵ ‘ 𝑦 ) ∈ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
115 |
111 114
|
sylibr |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
116 |
106 115
|
syl |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ) |
117 |
|
alephord2i |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
118 |
117
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
119 |
|
ontr2 |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ On ) → ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
120 |
82 16 119
|
mp2an |
⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
121 |
116 118 120
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
122 |
121
|
rexlimdva2 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
123 |
102 122
|
biimtrid |
⊢ ( 𝐴 ∈ On → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
124 |
41 123
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
125 |
101 124
|
sylbid |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
126 |
99 125
|
sylan9r |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
127 |
126
|
imp |
⊢ ( ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ℵ ‘ 𝐴 ) ) |
128 |
83
|
cbvmptv |
⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
129 |
1 128
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ↦ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
130 |
127 129
|
fmptd |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) |
131 |
|
ffvelcdm |
⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) ) |
132 |
|
onelss |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ℵ ‘ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
133 |
16 131 132
|
mpsyl |
⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
134 |
133
|
ralrimiva |
⊢ ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) → ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
135 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) ) |
136 |
90 11
|
ixpconst |
⊢ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) = ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |
137 |
135 136
|
sseqtrdi |
⊢ ( ∀ 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ℵ ‘ 𝐴 ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
138 |
130 134 137
|
3syl |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
139 |
|
ssdomg |
⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ∈ V → ( X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ⊆ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
140 |
98 138 139
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
141 |
140
|
adantrr |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
142 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ∧ X 𝑥 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ≼ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
143 |
97 141 142
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
144 |
143
|
expcom |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
145 |
144
|
3adant2 |
⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
146 |
|
cfsmo |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
147 |
16 146
|
ax-mp |
⊢ ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑤 ∈ ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
148 |
145 147
|
exlimiiv |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
149 |
148
|
a1i |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
150 |
34 40 149
|
3jaod |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) |
151 |
3 150
|
mpd |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
152 |
|
alephfnon |
⊢ ℵ Fn On |
153 |
152
|
fndmi |
⊢ dom ℵ = On |
154 |
153
|
eleq2i |
⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
155 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
156 |
|
1n0 |
⊢ 1o ≠ ∅ |
157 |
|
1oex |
⊢ 1o ∈ V |
158 |
157
|
0sdom |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
159 |
156 158
|
mpbir |
⊢ ∅ ≺ 1o |
160 |
|
id |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) |
161 |
|
fveq2 |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
162 |
|
cf0 |
⊢ ( cf ‘ ∅ ) = ∅ |
163 |
161 162
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ∅ ) |
164 |
160 163
|
oveq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = ( ∅ ↑m ∅ ) ) |
165 |
|
0ex |
⊢ ∅ ∈ V |
166 |
|
map0e |
⊢ ( ∅ ∈ V → ( ∅ ↑m ∅ ) = 1o ) |
167 |
165 166
|
ax-mp |
⊢ ( ∅ ↑m ∅ ) = 1o |
168 |
164 167
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
169 |
160 168
|
breq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ↔ ∅ ≺ 1o ) ) |
170 |
159 169
|
mpbiri |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
171 |
155 170
|
syl |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
172 |
154 171
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
173 |
151 172
|
pm2.61i |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( ( ℵ ‘ 𝐴 ) ↑m ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |