| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfpwsdom.1 |
⊢ 𝐵 ∈ V |
| 2 |
|
ovex |
⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V |
| 3 |
2
|
cardid |
⊢ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) |
| 4 |
3
|
ensymi |
⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 5 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
| 6 |
5
|
canth2 |
⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
| 7 |
5
|
pw2en |
⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 8 |
|
sdomentr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
| 10 |
|
mapdom1 |
⊢ ( 2o ≼ 𝐵 → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 11 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 13 |
|
ficard |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) |
| 14 |
2 13
|
ax-mp |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) |
| 15 |
|
fict |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) |
| 16 |
14 15
|
sylbir |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) |
| 17 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| 19 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 21 |
17 20
|
sylbi |
⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 22 |
|
domtr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 23 |
16 21 22
|
syl2an |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 24 |
|
domnsym |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 26 |
25
|
expcom |
⊢ ( 𝐴 ∈ On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 27 |
26
|
con2d |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) |
| 28 |
|
cardidm |
⊢ ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 29 |
|
iscard3 |
⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ) |
| 30 |
|
elun |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ↔ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 31 |
|
df-or |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 32 |
29 30 31
|
3bitri |
⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 33 |
28 32
|
mpbi |
⊢ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) |
| 34 |
12 27 33
|
syl56 |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
| 35 |
|
alephfnon |
⊢ ℵ Fn On |
| 36 |
|
fvelrnb |
⊢ ( ℵ Fn On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 38 |
34 37
|
imbitrdi |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 39 |
|
eqid |
⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) |
| 40 |
39
|
pwcfsdom |
⊢ ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) |
| 41 |
|
id |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 42 |
|
fveq2 |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 43 |
41 42
|
oveq12d |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) = ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 44 |
41 43
|
breq12d |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 45 |
40 44
|
mpbii |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 46 |
45
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 47 |
38 46
|
syl6 |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 48 |
47
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 49 |
|
ensdomtr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∧ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 50 |
4 48 49
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 51 |
|
fvex |
⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V |
| 52 |
51
|
enref |
⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
| 53 |
|
mapen |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 54 |
3 52 53
|
mp2an |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 55 |
|
mapxpen |
⊢ ( ( 𝐵 ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ On ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ) → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 56 |
1 18 51 55
|
mp3an |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 57 |
54 56
|
entri |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 58 |
|
sdomentr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ∧ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 59 |
50 57 58
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 60 |
5
|
xpdom2 |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ) |
| 61 |
17
|
biimpi |
⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 62 |
|
infxpen |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
| 63 |
18 61 62
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
| 64 |
|
domentr |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 65 |
60 63 64
|
syl2an |
⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 66 |
|
nsuceq0 |
⊢ suc 1o ≠ ∅ |
| 67 |
|
dom0 |
⊢ ( suc 1o ≼ ∅ ↔ suc 1o = ∅ ) |
| 68 |
66 67
|
nemtbir |
⊢ ¬ suc 1o ≼ ∅ |
| 69 |
|
df-2o |
⊢ 2o = suc 1o |
| 70 |
69
|
breq1i |
⊢ ( 2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵 ) |
| 71 |
|
breq2 |
⊢ ( 𝐵 = ∅ → ( suc 1o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) |
| 72 |
70 71
|
bitrid |
⊢ ( 𝐵 = ∅ → ( 2o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) |
| 73 |
72
|
biimpcd |
⊢ ( 2o ≼ 𝐵 → ( 𝐵 = ∅ → suc 1o ≼ ∅ ) ) |
| 74 |
73
|
adantld |
⊢ ( 2o ≼ 𝐵 → ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) → suc 1o ≼ ∅ ) ) |
| 75 |
68 74
|
mtoi |
⊢ ( 2o ≼ 𝐵 → ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) |
| 76 |
|
mapdom2 |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 77 |
65 75 76
|
syl2an |
⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
| 78 |
|
domnsym |
⊢ ( ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
| 80 |
79
|
expl |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 81 |
80
|
com12 |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 82 |
59 81
|
mt2d |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 83 |
|
domtri |
⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ V ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 84 |
51 5 83
|
mp2an |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 85 |
84
|
biimpri |
⊢ ( ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
| 86 |
82 85
|
nsyl2 |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 87 |
86
|
ex |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 88 |
|
fndm |
⊢ ( ℵ Fn On → dom ℵ = On ) |
| 89 |
35 88
|
ax-mp |
⊢ dom ℵ = On |
| 90 |
89
|
eleq2i |
⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 91 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 92 |
90 91
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 93 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 94 |
|
1oex |
⊢ 1o ∈ V |
| 95 |
94
|
0sdom |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 96 |
93 95
|
mpbir |
⊢ ∅ ≺ 1o |
| 97 |
|
id |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 98 |
|
oveq2 |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = ( 𝐵 ↑m ∅ ) ) |
| 99 |
|
map0e |
⊢ ( 𝐵 ∈ V → ( 𝐵 ↑m ∅ ) = 1o ) |
| 100 |
1 99
|
ax-mp |
⊢ ( 𝐵 ↑m ∅ ) = 1o |
| 101 |
98 100
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = 1o ) |
| 102 |
101
|
fveq2d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = ( card ‘ 1o ) ) |
| 103 |
|
1onn |
⊢ 1o ∈ ω |
| 104 |
|
cardnn |
⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) |
| 105 |
103 104
|
ax-mp |
⊢ ( card ‘ 1o ) = 1o |
| 106 |
102 105
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
| 107 |
106
|
fveq2d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( cf ‘ 1o ) ) |
| 108 |
|
df-1o |
⊢ 1o = suc ∅ |
| 109 |
108
|
fveq2i |
⊢ ( cf ‘ 1o ) = ( cf ‘ suc ∅ ) |
| 110 |
|
0elon |
⊢ ∅ ∈ On |
| 111 |
|
cfsuc |
⊢ ( ∅ ∈ On → ( cf ‘ suc ∅ ) = 1o ) |
| 112 |
110 111
|
ax-mp |
⊢ ( cf ‘ suc ∅ ) = 1o |
| 113 |
109 112
|
eqtri |
⊢ ( cf ‘ 1o ) = 1o |
| 114 |
107 113
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = 1o ) |
| 115 |
97 114
|
breq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ↔ ∅ ≺ 1o ) ) |
| 116 |
96 115
|
mpbiri |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
| 117 |
116
|
a1d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 118 |
92 117
|
syl |
⊢ ( ¬ 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
| 119 |
87 118
|
pm2.61i |
⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |