| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwcfsdom.1 |
|- H = ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) |
| 2 |
|
onzsl |
|- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 3 |
2
|
biimpi |
|- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 4 |
|
cfom |
|- ( cf ` _om ) = _om |
| 5 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
| 6 |
5
|
fveq2i |
|- ( cf ` ( aleph ` (/) ) ) = ( cf ` _om ) |
| 7 |
4 6 5
|
3eqtr4i |
|- ( cf ` ( aleph ` (/) ) ) = ( aleph ` (/) ) |
| 8 |
|
2fveq3 |
|- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` (/) ) ) ) |
| 9 |
|
fveq2 |
|- ( A = (/) -> ( aleph ` A ) = ( aleph ` (/) ) ) |
| 10 |
7 8 9
|
3eqtr4a |
|- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 11 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 12 |
11
|
canth2 |
|- ( aleph ` A ) ~< ~P ( aleph ` A ) |
| 13 |
11
|
pw2en |
|- ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) |
| 14 |
|
sdomentr |
|- ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) |
| 15 |
12 13 14
|
mp2an |
|- ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) |
| 16 |
|
alephon |
|- ( aleph ` A ) e. On |
| 17 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 18 |
|
omelon |
|- _om e. On |
| 19 |
|
2onn |
|- 2o e. _om |
| 20 |
|
onelss |
|- ( _om e. On -> ( 2o e. _om -> 2o C_ _om ) ) |
| 21 |
18 19 20
|
mp2 |
|- 2o C_ _om |
| 22 |
|
sstr |
|- ( ( 2o C_ _om /\ _om C_ ( aleph ` A ) ) -> 2o C_ ( aleph ` A ) ) |
| 23 |
21 22
|
mpan |
|- ( _om C_ ( aleph ` A ) -> 2o C_ ( aleph ` A ) ) |
| 24 |
17 23
|
sylbi |
|- ( A e. On -> 2o C_ ( aleph ` A ) ) |
| 25 |
|
ssdomg |
|- ( ( aleph ` A ) e. On -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) |
| 26 |
16 24 25
|
mpsyl |
|- ( A e. On -> 2o ~<_ ( aleph ` A ) ) |
| 27 |
|
mapdom1 |
|- ( 2o ~<_ ( aleph ` A ) -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 28 |
26 27
|
syl |
|- ( A e. On -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 29 |
|
sdomdomtr |
|- ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 30 |
15 28 29
|
sylancr |
|- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 31 |
|
oveq2 |
|- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
| 32 |
31
|
breq2d |
|- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) ) |
| 33 |
30 32
|
syl5ibrcom |
|- ( A e. On -> ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 34 |
10 33
|
syl5 |
|- ( A e. On -> ( A = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 35 |
|
alephreg |
|- ( cf ` ( aleph ` suc x ) ) = ( aleph ` suc x ) |
| 36 |
|
2fveq3 |
|- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` suc x ) ) ) |
| 37 |
|
fveq2 |
|- ( A = suc x -> ( aleph ` A ) = ( aleph ` suc x ) ) |
| 38 |
35 36 37
|
3eqtr4a |
|- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 39 |
38
|
rexlimivw |
|- ( E. x e. On A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 40 |
39 33
|
syl5 |
|- ( A e. On -> ( E. x e. On A = suc x -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 41 |
|
limelon |
|- ( ( A e. _V /\ Lim A ) -> A e. On ) |
| 42 |
|
ffn |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> f Fn ( cf ` ( aleph ` A ) ) ) |
| 43 |
|
fnrnfv |
|- ( f Fn ( cf ` ( aleph ` A ) ) -> ran f = { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
| 44 |
43
|
unieqd |
|- ( f Fn ( cf ` ( aleph ` A ) ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
| 45 |
42 44
|
syl |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
| 46 |
|
fvex |
|- ( f ` x ) e. _V |
| 47 |
46
|
dfiun2 |
|- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } |
| 48 |
45 47
|
eqtr4di |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
| 49 |
48
|
ad2antrl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
| 50 |
|
fnfvelrn |
|- ( ( f Fn ( cf ` ( aleph ` A ) ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
| 51 |
42 50
|
sylan |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
| 52 |
|
sseq2 |
|- ( y = ( f ` w ) -> ( z C_ y <-> z C_ ( f ` w ) ) ) |
| 53 |
52
|
rspcev |
|- ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
| 54 |
51 53
|
sylan |
|- ( ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
| 55 |
54
|
rexlimdva2 |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> E. y e. ran f z C_ y ) ) |
| 56 |
55
|
ralimdv |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
| 57 |
56
|
imp |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
| 58 |
57
|
adantl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
| 59 |
|
alephislim |
|- ( A e. On <-> Lim ( aleph ` A ) ) |
| 60 |
59
|
biimpi |
|- ( A e. On -> Lim ( aleph ` A ) ) |
| 61 |
|
frn |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ran f C_ ( aleph ` A ) ) |
| 62 |
61
|
adantr |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ran f C_ ( aleph ` A ) ) |
| 63 |
|
coflim |
|- ( ( Lim ( aleph ` A ) /\ ran f C_ ( aleph ` A ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
| 64 |
60 62 63
|
syl2an |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
| 65 |
58 64
|
mpbird |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = ( aleph ` A ) ) |
| 66 |
49 65
|
eqtr3d |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = ( aleph ` A ) ) |
| 67 |
|
ffvelcdm |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) e. ( aleph ` A ) ) |
| 68 |
16
|
oneli |
|- ( ( f ` x ) e. ( aleph ` A ) -> ( f ` x ) e. On ) |
| 69 |
|
harcard |
|- ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) |
| 70 |
|
iscard |
|- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) <-> ( ( har ` ( f ` x ) ) e. On /\ A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) ) |
| 71 |
70
|
simprbi |
|- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) -> A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) |
| 72 |
69 71
|
ax-mp |
|- A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) |
| 73 |
|
domrefg |
|- ( ( f ` x ) e. _V -> ( f ` x ) ~<_ ( f ` x ) ) |
| 74 |
46 73
|
ax-mp |
|- ( f ` x ) ~<_ ( f ` x ) |
| 75 |
|
elharval |
|- ( ( f ` x ) e. ( har ` ( f ` x ) ) <-> ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) ) |
| 76 |
75
|
biimpri |
|- ( ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
| 77 |
74 76
|
mpan2 |
|- ( ( f ` x ) e. On -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
| 78 |
|
breq1 |
|- ( y = ( f ` x ) -> ( y ~< ( har ` ( f ` x ) ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 79 |
78
|
rspccv |
|- ( A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) -> ( ( f ` x ) e. ( har ` ( f ` x ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 80 |
72 77 79
|
mpsyl |
|- ( ( f ` x ) e. On -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
| 81 |
67 68 80
|
3syl |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
| 82 |
|
harcl |
|- ( har ` ( f ` x ) ) e. On |
| 83 |
|
2fveq3 |
|- ( y = x -> ( har ` ( f ` y ) ) = ( har ` ( f ` x ) ) ) |
| 84 |
83 1
|
fvmptg |
|- ( ( x e. ( cf ` ( aleph ` A ) ) /\ ( har ` ( f ` x ) ) e. On ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
| 85 |
82 84
|
mpan2 |
|- ( x e. ( cf ` ( aleph ` A ) ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
| 86 |
85
|
breq2d |
|- ( x e. ( cf ` ( aleph ` A ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 87 |
86
|
adantl |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
| 88 |
81 87
|
mpbird |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( H ` x ) ) |
| 89 |
88
|
ralrimiva |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) ) |
| 90 |
|
fvex |
|- ( cf ` ( aleph ` A ) ) e. _V |
| 91 |
|
eqid |
|- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) |
| 92 |
|
eqid |
|- X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) = X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) |
| 93 |
90 91 92
|
konigth |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 94 |
89 93
|
syl |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 95 |
94
|
ad2antrl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 96 |
66 95
|
eqbrtrrd |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 97 |
41 96
|
sylan |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
| 98 |
|
ovex |
|- ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V |
| 99 |
67
|
ex |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( f ` x ) e. ( aleph ` A ) ) ) |
| 100 |
|
alephlim |
|- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) |
| 101 |
100
|
eleq2d |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) <-> ( f ` x ) e. U_ y e. A ( aleph ` y ) ) ) |
| 102 |
|
eliun |
|- ( ( f ` x ) e. U_ y e. A ( aleph ` y ) <-> E. y e. A ( f ` x ) e. ( aleph ` y ) ) |
| 103 |
|
alephcard |
|- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
| 104 |
103
|
eleq2i |
|- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) <-> ( f ` x ) e. ( aleph ` y ) ) |
| 105 |
|
cardsdomelir |
|- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) -> ( f ` x ) ~< ( aleph ` y ) ) |
| 106 |
104 105
|
sylbir |
|- ( ( f ` x ) e. ( aleph ` y ) -> ( f ` x ) ~< ( aleph ` y ) ) |
| 107 |
|
elharval |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) <-> ( ( aleph ` y ) e. On /\ ( aleph ` y ) ~<_ ( f ` x ) ) ) |
| 108 |
107
|
simprbi |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> ( aleph ` y ) ~<_ ( f ` x ) ) |
| 109 |
|
domnsym |
|- ( ( aleph ` y ) ~<_ ( f ` x ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
| 110 |
108 109
|
syl |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
| 111 |
110
|
con2i |
|- ( ( f ` x ) ~< ( aleph ` y ) -> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
| 112 |
|
alephon |
|- ( aleph ` y ) e. On |
| 113 |
|
ontri1 |
|- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` y ) e. On ) -> ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) ) |
| 114 |
82 112 113
|
mp2an |
|- ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
| 115 |
111 114
|
sylibr |
|- ( ( f ` x ) ~< ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
| 116 |
106 115
|
syl |
|- ( ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
| 117 |
|
alephord2i |
|- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
| 118 |
117
|
imp |
|- ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) |
| 119 |
|
ontr2 |
|- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` A ) e. On ) -> ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 120 |
82 16 119
|
mp2an |
|- ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 121 |
116 118 120
|
syl2anr |
|- ( ( ( A e. On /\ y e. A ) /\ ( f ` x ) e. ( aleph ` y ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 122 |
121
|
rexlimdva2 |
|- ( A e. On -> ( E. y e. A ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 123 |
102 122
|
biimtrid |
|- ( A e. On -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 124 |
41 123
|
syl |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 125 |
101 124
|
sylbid |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 126 |
99 125
|
sylan9r |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
| 127 |
126
|
imp |
|- ( ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
| 128 |
83
|
cbvmptv |
|- ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
| 129 |
1 128
|
eqtri |
|- H = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
| 130 |
127 129
|
fmptd |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) |
| 131 |
|
ffvelcdm |
|- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) e. ( aleph ` A ) ) |
| 132 |
|
onelss |
|- ( ( aleph ` A ) e. On -> ( ( H ` x ) e. ( aleph ` A ) -> ( H ` x ) C_ ( aleph ` A ) ) ) |
| 133 |
16 131 132
|
mpsyl |
|- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) C_ ( aleph ` A ) ) |
| 134 |
133
|
ralrimiva |
|- ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) ) |
| 135 |
|
ss2ixp |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) ) |
| 136 |
90 11
|
ixpconst |
|- X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) = ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |
| 137 |
135 136
|
sseqtrdi |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 138 |
130 134 137
|
3syl |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 139 |
|
ssdomg |
|- ( ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V -> ( X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 140 |
98 138 139
|
mpsyl |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 141 |
140
|
adantrr |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 142 |
|
sdomdomtr |
|- ( ( ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) /\ X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 143 |
97 141 142
|
syl2anc |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 144 |
143
|
expcom |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 145 |
144
|
3adant2 |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 146 |
|
cfsmo |
|- ( ( aleph ` A ) e. On -> E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) |
| 147 |
16 146
|
ax-mp |
|- E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) |
| 148 |
145 147
|
exlimiiv |
|- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 149 |
148
|
a1i |
|- ( A e. On -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 150 |
34 40 149
|
3jaod |
|- ( A e. On -> ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
| 151 |
3 150
|
mpd |
|- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 152 |
|
alephfnon |
|- aleph Fn On |
| 153 |
152
|
fndmi |
|- dom aleph = On |
| 154 |
153
|
eleq2i |
|- ( A e. dom aleph <-> A e. On ) |
| 155 |
|
ndmfv |
|- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
| 156 |
|
1n0 |
|- 1o =/= (/) |
| 157 |
|
1oex |
|- 1o e. _V |
| 158 |
157
|
0sdom |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
| 159 |
156 158
|
mpbir |
|- (/) ~< 1o |
| 160 |
|
id |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) |
| 161 |
|
fveq2 |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) |
| 162 |
|
cf0 |
|- ( cf ` (/) ) = (/) |
| 163 |
161 162
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = (/) ) |
| 164 |
160 163
|
oveq12d |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( (/) ^m (/) ) ) |
| 165 |
|
0ex |
|- (/) e. _V |
| 166 |
|
map0e |
|- ( (/) e. _V -> ( (/) ^m (/) ) = 1o ) |
| 167 |
165 166
|
ax-mp |
|- ( (/) ^m (/) ) = 1o |
| 168 |
164 167
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = 1o ) |
| 169 |
160 168
|
breq12d |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> (/) ~< 1o ) ) |
| 170 |
159 169
|
mpbiri |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 171 |
155 170
|
syl |
|- ( -. A e. dom aleph -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 172 |
154 171
|
sylnbir |
|- ( -. A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
| 173 |
151 172
|
pm2.61i |
|- ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |