Metamath Proof Explorer


Theorem bj-elsn12g

Description: Join of elsng and elsn2g . (Contributed by BJ, 18-Nov-2023)

Ref Expression
Assertion bj-elsn12g ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elsng ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
2 elsn2g ( 𝐵𝑊 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
3 1 2 jaoi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )