Metamath Proof Explorer


Theorem bj-exlimmpbi

Description: Lemma for theorems of the vtoclg family. (Contributed by BJ, 3-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-exlimmpbi.nf
|- F/ x ps
bj-exlimmpbi.maj
|- ( ch -> ( ph <-> ps ) )
bj-exlimmpbi.min
|- ph
Assertion bj-exlimmpbi
|- ( E. x ch -> ps )

Proof

Step Hyp Ref Expression
1 bj-exlimmpbi.nf
 |-  F/ x ps
2 bj-exlimmpbi.maj
 |-  ( ch -> ( ph <-> ps ) )
3 bj-exlimmpbi.min
 |-  ph
4 3 2 mpbii
 |-  ( ch -> ps )
5 1 4 exlimi
 |-  ( E. x ch -> ps )