Metamath Proof Explorer


Theorem bj-exlimmpbir

Description: Lemma for theorems of the vtoclg family. (Contributed by BJ, 3-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-exlimmpbir.nf
|- F/ x ph
bj-exlimmpbir.maj
|- ( ch -> ( ph <-> ps ) )
bj-exlimmpbir.min
|- ps
Assertion bj-exlimmpbir
|- ( E. x ch -> ph )

Proof

Step Hyp Ref Expression
1 bj-exlimmpbir.nf
 |-  F/ x ph
2 bj-exlimmpbir.maj
 |-  ( ch -> ( ph <-> ps ) )
3 bj-exlimmpbir.min
 |-  ps
4 3 2 mpbiri
 |-  ( ch -> ph )
5 1 4 exlimi
 |-  ( E. x ch -> ph )