Metamath Proof Explorer
Description: Lemma for theorems of the vtoclg family. (Contributed by BJ, 3-Oct-2019) (Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bj-exlimmpbir.nf |
⊢ Ⅎ 𝑥 𝜑 |
|
|
bj-exlimmpbir.maj |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
bj-exlimmpbir.min |
⊢ 𝜓 |
|
Assertion |
bj-exlimmpbir |
⊢ ( ∃ 𝑥 𝜒 → 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-exlimmpbir.nf |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
bj-exlimmpbir.maj |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
bj-exlimmpbir.min |
⊢ 𝜓 |
4 |
3 2
|
mpbiri |
⊢ ( 𝜒 → 𝜑 ) |
5 |
1 4
|
exlimi |
⊢ ( ∃ 𝑥 𝜒 → 𝜑 ) |