Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-fununsn.un | |- ( ph -> F = ( G u. { <. B , C >. } ) ) |
|
| bj-fununsn1.neq | |- ( ph -> -. A = B ) |
||
| Assertion | bj-fununsn1 | |- ( ph -> ( F ` A ) = ( G ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fununsn.un | |- ( ph -> F = ( G u. { <. B , C >. } ) ) |
|
| 2 | bj-fununsn1.neq | |- ( ph -> -. A = B ) |
|
| 3 | dmsnopss | |- dom { <. B , C >. } C_ { B } |
|
| 4 | 3 | a1i | |- ( ph -> dom { <. B , C >. } C_ { B } ) |
| 5 | elsni | |- ( A e. { B } -> A = B ) |
|
| 6 | 2 5 | nsyl | |- ( ph -> -. A e. { B } ) |
| 7 | 4 6 | ssneldd | |- ( ph -> -. A e. dom { <. B , C >. } ) |
| 8 | 1 7 | bj-funun | |- ( ph -> ( F ` A ) = ( G ` A ) ) |