Metamath Proof Explorer


Theorem bj-fununsn1

Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fununsn.un
|- ( ph -> F = ( G u. { <. B , C >. } ) )
bj-fununsn1.neq
|- ( ph -> -. A = B )
Assertion bj-fununsn1
|- ( ph -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 bj-fununsn.un
 |-  ( ph -> F = ( G u. { <. B , C >. } ) )
2 bj-fununsn1.neq
 |-  ( ph -> -. A = B )
3 dmsnopss
 |-  dom { <. B , C >. } C_ { B }
4 3 a1i
 |-  ( ph -> dom { <. B , C >. } C_ { B } )
5 elsni
 |-  ( A e. { B } -> A = B )
6 2 5 nsyl
 |-  ( ph -> -. A e. { B } )
7 4 6 ssneldd
 |-  ( ph -> -. A e. dom { <. B , C >. } )
8 1 7 bj-funun
 |-  ( ph -> ( F ` A ) = ( G ` A ) )