| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-funun.un |
|- ( ph -> F = ( G u. H ) ) |
| 2 |
|
bj-funun.neldm |
|- ( ph -> -. A e. dom H ) |
| 3 |
|
imaeq1 |
|- ( F = ( G u. H ) -> ( F " { A } ) = ( ( G u. H ) " { A } ) ) |
| 4 |
|
imaundir |
|- ( ( G u. H ) " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) |
| 5 |
3 4
|
eqtrdi |
|- ( F = ( G u. H ) -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) ) |
| 7 |
|
ndmima |
|- ( -. A e. dom H -> ( H " { A } ) = (/) ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( H " { A } ) = (/) ) |
| 9 |
|
uneq2 |
|- ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( ( G " { A } ) u. (/) ) ) |
| 10 |
|
un0 |
|- ( ( G " { A } ) u. (/) ) = ( G " { A } ) |
| 11 |
9 10
|
eqtrdi |
|- ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) ) |
| 12 |
8 11
|
syl |
|- ( ph -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) ) |
| 13 |
6 12
|
eqtrd |
|- ( ph -> ( F " { A } ) = ( G " { A } ) ) |
| 14 |
|
bj-imafv |
|- ( ( F " { A } ) = ( G " { A } ) -> ( F ` A ) = ( G ` A ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( F ` A ) = ( G ` A ) ) |