Step |
Hyp |
Ref |
Expression |
1 |
|
bj-funun.un |
|- ( ph -> F = ( G u. H ) ) |
2 |
|
bj-funun.neldm |
|- ( ph -> -. A e. dom H ) |
3 |
|
imaeq1 |
|- ( F = ( G u. H ) -> ( F " { A } ) = ( ( G u. H ) " { A } ) ) |
4 |
|
imaundir |
|- ( ( G u. H ) " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) |
5 |
3 4
|
eqtrdi |
|- ( F = ( G u. H ) -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) ) |
6 |
1 5
|
syl |
|- ( ph -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) ) |
7 |
|
ndmima |
|- ( -. A e. dom H -> ( H " { A } ) = (/) ) |
8 |
2 7
|
syl |
|- ( ph -> ( H " { A } ) = (/) ) |
9 |
|
uneq2 |
|- ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( ( G " { A } ) u. (/) ) ) |
10 |
|
un0 |
|- ( ( G " { A } ) u. (/) ) = ( G " { A } ) |
11 |
9 10
|
eqtrdi |
|- ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) ) |
12 |
8 11
|
syl |
|- ( ph -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) ) |
13 |
6 12
|
eqtrd |
|- ( ph -> ( F " { A } ) = ( G " { A } ) ) |
14 |
|
bj-imafv |
|- ( ( F " { A } ) = ( G " { A } ) -> ( F ` A ) = ( G ` A ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( F ` A ) = ( G ` A ) ) |