Metamath Proof Explorer


Theorem bj-funun

Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023)

Ref Expression
Hypotheses bj-funun.un
|- ( ph -> F = ( G u. H ) )
bj-funun.neldm
|- ( ph -> -. A e. dom H )
Assertion bj-funun
|- ( ph -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 bj-funun.un
 |-  ( ph -> F = ( G u. H ) )
2 bj-funun.neldm
 |-  ( ph -> -. A e. dom H )
3 imaeq1
 |-  ( F = ( G u. H ) -> ( F " { A } ) = ( ( G u. H ) " { A } ) )
4 imaundir
 |-  ( ( G u. H ) " { A } ) = ( ( G " { A } ) u. ( H " { A } ) )
5 3 4 eqtrdi
 |-  ( F = ( G u. H ) -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) )
6 1 5 syl
 |-  ( ph -> ( F " { A } ) = ( ( G " { A } ) u. ( H " { A } ) ) )
7 ndmima
 |-  ( -. A e. dom H -> ( H " { A } ) = (/) )
8 2 7 syl
 |-  ( ph -> ( H " { A } ) = (/) )
9 uneq2
 |-  ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( ( G " { A } ) u. (/) ) )
10 un0
 |-  ( ( G " { A } ) u. (/) ) = ( G " { A } )
11 9 10 eqtrdi
 |-  ( ( H " { A } ) = (/) -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) )
12 8 11 syl
 |-  ( ph -> ( ( G " { A } ) u. ( H " { A } ) ) = ( G " { A } ) )
13 6 12 eqtrd
 |-  ( ph -> ( F " { A } ) = ( G " { A } ) )
14 bj-imafv
 |-  ( ( F " { A } ) = ( G " { A } ) -> ( F ` A ) = ( G ` A ) )
15 13 14 syl
 |-  ( ph -> ( F ` A ) = ( G ` A ) )