Metamath Proof Explorer


Theorem bj-imafv

Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023)

Ref Expression
Assertion bj-imafv
|- ( ( F " { A } ) = ( G " { A } ) -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 eqeq1
 |-  ( ( F " { A } ) = ( G " { A } ) -> ( ( F " { A } ) = { x } <-> ( G " { A } ) = { x } ) )
2 1 abbidv
 |-  ( ( F " { A } ) = ( G " { A } ) -> { x | ( F " { A } ) = { x } } = { x | ( G " { A } ) = { x } } )
3 2 unieqd
 |-  ( ( F " { A } ) = ( G " { A } ) -> U. { x | ( F " { A } ) = { x } } = U. { x | ( G " { A } ) = { x } } )
4 dffv4
 |-  ( F ` A ) = U. { x | ( F " { A } ) = { x } }
5 dffv4
 |-  ( G ` A ) = U. { x | ( G " { A } ) = { x } }
6 3 4 5 3eqtr4g
 |-  ( ( F " { A } ) = ( G " { A } ) -> ( F ` A ) = ( G ` A ) )