Metamath Proof Explorer


Theorem bj-fununsn2

Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fununsn.un
|- ( ph -> F = ( G u. { <. B , C >. } ) )
bj-fununsn2.neldm
|- ( ph -> -. B e. dom G )
bj-fununsn2.ex1
|- ( ph -> B e. V )
bj-fununsn2.ex2
|- ( ph -> C e. W )
Assertion bj-fununsn2
|- ( ph -> ( F ` B ) = C )

Proof

Step Hyp Ref Expression
1 bj-fununsn.un
 |-  ( ph -> F = ( G u. { <. B , C >. } ) )
2 bj-fununsn2.neldm
 |-  ( ph -> -. B e. dom G )
3 bj-fununsn2.ex1
 |-  ( ph -> B e. V )
4 bj-fununsn2.ex2
 |-  ( ph -> C e. W )
5 uncom
 |-  ( G u. { <. B , C >. } ) = ( { <. B , C >. } u. G )
6 1 5 eqtrdi
 |-  ( ph -> F = ( { <. B , C >. } u. G ) )
7 6 2 bj-funun
 |-  ( ph -> ( F ` B ) = ( { <. B , C >. } ` B ) )
8 fvsng
 |-  ( ( B e. V /\ C e. W ) -> ( { <. B , C >. } ` B ) = C )
9 3 4 8 syl2anc
 |-  ( ph -> ( { <. B , C >. } ` B ) = C )
10 7 9 eqtrd
 |-  ( ph -> ( F ` B ) = C )