Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-fununsn.un | |- ( ph -> F = ( G u. { <. B , C >. } ) ) |
|
bj-fununsn2.neldm | |- ( ph -> -. B e. dom G ) |
||
bj-fununsn2.ex1 | |- ( ph -> B e. V ) |
||
bj-fununsn2.ex2 | |- ( ph -> C e. W ) |
||
Assertion | bj-fununsn2 | |- ( ph -> ( F ` B ) = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | |- ( ph -> F = ( G u. { <. B , C >. } ) ) |
|
2 | bj-fununsn2.neldm | |- ( ph -> -. B e. dom G ) |
|
3 | bj-fununsn2.ex1 | |- ( ph -> B e. V ) |
|
4 | bj-fununsn2.ex2 | |- ( ph -> C e. W ) |
|
5 | uncom | |- ( G u. { <. B , C >. } ) = ( { <. B , C >. } u. G ) |
|
6 | 1 5 | eqtrdi | |- ( ph -> F = ( { <. B , C >. } u. G ) ) |
7 | 6 2 | bj-funun | |- ( ph -> ( F ` B ) = ( { <. B , C >. } ` B ) ) |
8 | fvsng | |- ( ( B e. V /\ C e. W ) -> ( { <. B , C >. } ` B ) = C ) |
|
9 | 3 4 8 | syl2anc | |- ( ph -> ( { <. B , C >. } ` B ) = C ) |
10 | 7 9 | eqtrd | |- ( ph -> ( F ` B ) = C ) |