Metamath Proof Explorer


Theorem bj-fununsn2

Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fununsn.un ( 𝜑𝐹 = ( 𝐺 ∪ { ⟨ 𝐵 , 𝐶 ⟩ } ) )
bj-fununsn2.neldm ( 𝜑 → ¬ 𝐵 ∈ dom 𝐺 )
bj-fununsn2.ex1 ( 𝜑𝐵𝑉 )
bj-fununsn2.ex2 ( 𝜑𝐶𝑊 )
Assertion bj-fununsn2 ( 𝜑 → ( 𝐹𝐵 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 bj-fununsn.un ( 𝜑𝐹 = ( 𝐺 ∪ { ⟨ 𝐵 , 𝐶 ⟩ } ) )
2 bj-fununsn2.neldm ( 𝜑 → ¬ 𝐵 ∈ dom 𝐺 )
3 bj-fununsn2.ex1 ( 𝜑𝐵𝑉 )
4 bj-fununsn2.ex2 ( 𝜑𝐶𝑊 )
5 uncom ( 𝐺 ∪ { ⟨ 𝐵 , 𝐶 ⟩ } ) = ( { ⟨ 𝐵 , 𝐶 ⟩ } ∪ 𝐺 )
6 1 5 eqtrdi ( 𝜑𝐹 = ( { ⟨ 𝐵 , 𝐶 ⟩ } ∪ 𝐺 ) )
7 6 2 bj-funun ( 𝜑 → ( 𝐹𝐵 ) = ( { ⟨ 𝐵 , 𝐶 ⟩ } ‘ 𝐵 ) )
8 fvsng ( ( 𝐵𝑉𝐶𝑊 ) → ( { ⟨ 𝐵 , 𝐶 ⟩ } ‘ 𝐵 ) = 𝐶 )
9 3 4 8 syl2anc ( 𝜑 → ( { ⟨ 𝐵 , 𝐶 ⟩ } ‘ 𝐵 ) = 𝐶 )
10 7 9 eqtrd ( 𝜑 → ( 𝐹𝐵 ) = 𝐶 )