Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-fununsn.un | ⊢ ( 𝜑 → 𝐹 = ( 𝐺 ∪ { 〈 𝐵 , 𝐶 〉 } ) ) | |
bj-fununsn2.neldm | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐺 ) | ||
bj-fununsn2.ex1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
bj-fununsn2.ex2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
Assertion | bj-fununsn2 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | ⊢ ( 𝜑 → 𝐹 = ( 𝐺 ∪ { 〈 𝐵 , 𝐶 〉 } ) ) | |
2 | bj-fununsn2.neldm | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐺 ) | |
3 | bj-fununsn2.ex1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
4 | bj-fununsn2.ex2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
5 | uncom | ⊢ ( 𝐺 ∪ { 〈 𝐵 , 𝐶 〉 } ) = ( { 〈 𝐵 , 𝐶 〉 } ∪ 𝐺 ) | |
6 | 1 5 | eqtrdi | ⊢ ( 𝜑 → 𝐹 = ( { 〈 𝐵 , 𝐶 〉 } ∪ 𝐺 ) ) |
7 | 6 2 | bj-funun | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( { 〈 𝐵 , 𝐶 〉 } ‘ 𝐵 ) ) |
8 | fvsng | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( { 〈 𝐵 , 𝐶 〉 } ‘ 𝐵 ) = 𝐶 ) | |
9 | 3 4 8 | syl2anc | ⊢ ( 𝜑 → ( { 〈 𝐵 , 𝐶 〉 } ‘ 𝐵 ) = 𝐶 ) |
10 | 7 9 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = 𝐶 ) |