Metamath Proof Explorer


Theorem bj-fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023)

Ref Expression
Hypotheses bj-fvsnun.un ( 𝜑𝐺 = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
bj-fvsnun1.eldif ( 𝜑𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) )
Assertion bj-fvsnun1 ( 𝜑 → ( 𝐺𝐷 ) = ( 𝐹𝐷 ) )

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un ( 𝜑𝐺 = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
2 bj-fvsnun1.eldif ( 𝜑𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) )
3 eldifsnneq ( 𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) → ¬ 𝐷 = 𝐴 )
4 2 3 syl ( 𝜑 → ¬ 𝐷 = 𝐴 )
5 1 4 bj-fununsn1 ( 𝜑 → ( 𝐺𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) )
6 2 fvresd ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( 𝐹𝐷 ) )
7 5 6 eqtrd ( 𝜑 → ( 𝐺𝐷 ) = ( 𝐹𝐷 ) )