Metamath Proof Explorer


Theorem bj-fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023)

Ref Expression
Hypotheses bj-fvsnun.un φ G = F C A A B
bj-fvsnun1.eldif φ D C A
Assertion bj-fvsnun1 φ G D = F D

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un φ G = F C A A B
2 bj-fvsnun1.eldif φ D C A
3 eldifsnneq D C A ¬ D = A
4 2 3 syl φ ¬ D = A
5 1 4 bj-fununsn1 φ G D = F C A D
6 2 fvresd φ F C A D = F D
7 5 6 eqtrd φ G D = F D