Metamath Proof Explorer


Theorem bj-fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023)

Ref Expression
Hypotheses bj-fvsnun.un φG=FCAAB
bj-fvsnun1.eldif φDCA
Assertion bj-fvsnun1 φGD=FD

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un φG=FCAAB
2 bj-fvsnun1.eldif φDCA
3 eldifsnneq DCA¬D=A
4 2 3 syl φ¬D=A
5 1 4 bj-fununsn1 φGD=FCAD
6 2 fvresd φFCAD=FD
7 5 6 eqtrd φGD=FD