Metamath Proof Explorer


Theorem bj-fvsnun2

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvsnun.un ( 𝜑𝐺 = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
bj-fvsnun2.ex1 ( 𝜑𝐴𝑉 )
bj-fvsnun2.ex2 ( 𝜑𝐵𝑊 )
Assertion bj-fvsnun2 ( 𝜑 → ( 𝐺𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un ( 𝜑𝐺 = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
2 bj-fvsnun2.ex1 ( 𝜑𝐴𝑉 )
3 bj-fvsnun2.ex2 ( 𝜑𝐵𝑊 )
4 dmres dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( 𝐶 ∖ { 𝐴 } ) ∩ dom 𝐹 )
5 inss1 ( ( 𝐶 ∖ { 𝐴 } ) ∩ dom 𝐹 ) ⊆ ( 𝐶 ∖ { 𝐴 } )
6 4 5 eqsstri dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ⊆ ( 𝐶 ∖ { 𝐴 } )
7 6 a1i ( 𝜑 → dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ⊆ ( 𝐶 ∖ { 𝐴 } ) )
8 neldifsnd ( 𝜑 → ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 } ) )
9 7 8 ssneldd ( 𝜑 → ¬ 𝐴 ∈ dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) )
10 1 9 2 3 bj-fununsn2 ( 𝜑 → ( 𝐺𝐴 ) = 𝐵 )