Step |
Hyp |
Ref |
Expression |
1 |
|
bj-fvsnun.un |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ { 〈 𝐴 , 𝐵 〉 } ) ) |
2 |
|
bj-fvsnun2.ex1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
bj-fvsnun2.ex2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( 𝐶 ∖ { 𝐴 } ) ∩ dom 𝐹 ) |
5 |
|
inss1 |
⊢ ( ( 𝐶 ∖ { 𝐴 } ) ∩ dom 𝐹 ) ⊆ ( 𝐶 ∖ { 𝐴 } ) |
6 |
4 5
|
eqsstri |
⊢ dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ⊆ ( 𝐶 ∖ { 𝐴 } ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ⊆ ( 𝐶 ∖ { 𝐴 } ) ) |
8 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 } ) ) |
9 |
7 8
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝐴 ∈ dom ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
10 |
1 9 2 3
|
bj-fununsn2 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 𝐵 ) |