Metamath Proof Explorer


Theorem bj-fvsnun2

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvsnun.un
|- ( ph -> G = ( ( F |` ( C \ { A } ) ) u. { <. A , B >. } ) )
bj-fvsnun2.ex1
|- ( ph -> A e. V )
bj-fvsnun2.ex2
|- ( ph -> B e. W )
Assertion bj-fvsnun2
|- ( ph -> ( G ` A ) = B )

Proof

Step Hyp Ref Expression
1 bj-fvsnun.un
 |-  ( ph -> G = ( ( F |` ( C \ { A } ) ) u. { <. A , B >. } ) )
2 bj-fvsnun2.ex1
 |-  ( ph -> A e. V )
3 bj-fvsnun2.ex2
 |-  ( ph -> B e. W )
4 dmres
 |-  dom ( F |` ( C \ { A } ) ) = ( ( C \ { A } ) i^i dom F )
5 inss1
 |-  ( ( C \ { A } ) i^i dom F ) C_ ( C \ { A } )
6 4 5 eqsstri
 |-  dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } )
7 6 a1i
 |-  ( ph -> dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } ) )
8 neldifsnd
 |-  ( ph -> -. A e. ( C \ { A } ) )
9 7 8 ssneldd
 |-  ( ph -> -. A e. dom ( F |` ( C \ { A } ) ) )
10 1 9 2 3 bj-fununsn2
 |-  ( ph -> ( G ` A ) = B )