Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 18-Mar-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-fvsnun.un | |- ( ph -> G = ( ( F |` ( C \ { A } ) ) u. { <. A , B >. } ) ) |
|
bj-fvsnun2.ex1 | |- ( ph -> A e. V ) |
||
bj-fvsnun2.ex2 | |- ( ph -> B e. W ) |
||
Assertion | bj-fvsnun2 | |- ( ph -> ( G ` A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | |- ( ph -> G = ( ( F |` ( C \ { A } ) ) u. { <. A , B >. } ) ) |
|
2 | bj-fvsnun2.ex1 | |- ( ph -> A e. V ) |
|
3 | bj-fvsnun2.ex2 | |- ( ph -> B e. W ) |
|
4 | dmres | |- dom ( F |` ( C \ { A } ) ) = ( ( C \ { A } ) i^i dom F ) |
|
5 | inss1 | |- ( ( C \ { A } ) i^i dom F ) C_ ( C \ { A } ) |
|
6 | 4 5 | eqsstri | |- dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } ) |
7 | 6 | a1i | |- ( ph -> dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } ) ) |
8 | neldifsnd | |- ( ph -> -. A e. ( C \ { A } ) ) |
|
9 | 7 8 | ssneldd | |- ( ph -> -. A e. dom ( F |` ( C \ { A } ) ) ) |
10 | 1 9 2 3 | bj-fununsn2 | |- ( ph -> ( G ` A ) = B ) |