| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-fvsnun.un |
|- ( ph -> G = ( ( F |` ( C \ { A } ) ) u. { <. A , B >. } ) ) |
| 2 |
|
bj-fvsnun2.ex1 |
|- ( ph -> A e. V ) |
| 3 |
|
bj-fvsnun2.ex2 |
|- ( ph -> B e. W ) |
| 4 |
|
dmres |
|- dom ( F |` ( C \ { A } ) ) = ( ( C \ { A } ) i^i dom F ) |
| 5 |
|
inss1 |
|- ( ( C \ { A } ) i^i dom F ) C_ ( C \ { A } ) |
| 6 |
4 5
|
eqsstri |
|- dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } ) |
| 7 |
6
|
a1i |
|- ( ph -> dom ( F |` ( C \ { A } ) ) C_ ( C \ { A } ) ) |
| 8 |
|
neldifsnd |
|- ( ph -> -. A e. ( C \ { A } ) ) |
| 9 |
7 8
|
ssneldd |
|- ( ph -> -. A e. dom ( F |` ( C \ { A } ) ) ) |
| 10 |
1 9 2 3
|
bj-fununsn2 |
|- ( ph -> ( G ` A ) = B ) |