Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-fvmptunsn.un | |- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) ) |
|
| bj-fvmptunsn.nel | |- ( ph -> -. C e. A ) |
||
| bj-fvmptunsn1.ex1 | |- ( ph -> C e. V ) |
||
| bj-fvmptunsn1.ex2 | |- ( ph -> D e. W ) |
||
| Assertion | bj-fvmptunsn1 | |- ( ph -> ( F ` C ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvmptunsn.un | |- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) ) |
|
| 2 | bj-fvmptunsn.nel | |- ( ph -> -. C e. A ) |
|
| 3 | bj-fvmptunsn1.ex1 | |- ( ph -> C e. V ) |
|
| 4 | bj-fvmptunsn1.ex2 | |- ( ph -> D e. W ) |
|
| 5 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 6 | 5 | dmmptss | |- dom ( x e. A |-> B ) C_ A |
| 7 | 6 | sseli | |- ( C e. dom ( x e. A |-> B ) -> C e. A ) |
| 8 | 2 7 | nsyl | |- ( ph -> -. C e. dom ( x e. A |-> B ) ) |
| 9 | 1 8 3 4 | bj-fununsn2 | |- ( ph -> ( F ` C ) = D ) |