Metamath Proof Explorer


Theorem bj-fvmptunsn1

Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvmptunsn.un
|- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) )
bj-fvmptunsn.nel
|- ( ph -> -. C e. A )
bj-fvmptunsn1.ex1
|- ( ph -> C e. V )
bj-fvmptunsn1.ex2
|- ( ph -> D e. W )
Assertion bj-fvmptunsn1
|- ( ph -> ( F ` C ) = D )

Proof

Step Hyp Ref Expression
1 bj-fvmptunsn.un
 |-  ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) )
2 bj-fvmptunsn.nel
 |-  ( ph -> -. C e. A )
3 bj-fvmptunsn1.ex1
 |-  ( ph -> C e. V )
4 bj-fvmptunsn1.ex2
 |-  ( ph -> D e. W )
5 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
6 5 dmmptss
 |-  dom ( x e. A |-> B ) C_ A
7 6 sseli
 |-  ( C e. dom ( x e. A |-> B ) -> C e. A )
8 2 7 nsyl
 |-  ( ph -> -. C e. dom ( x e. A |-> B ) )
9 1 8 3 4 bj-fununsn2
 |-  ( ph -> ( F ` C ) = D )