Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-fvmptunsn.un | |- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) ) |
|
bj-fvmptunsn.nel | |- ( ph -> -. C e. A ) |
||
bj-fvmptunsn2.el | |- ( ph -> E e. A ) |
||
bj-fvmptunsn2.ex | |- ( ph -> G e. V ) |
||
bj-fvmptunsn2.is | |- ( ( ph /\ x = E ) -> B = G ) |
||
Assertion | bj-fvmptunsn2 | |- ( ph -> ( F ` E ) = G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvmptunsn.un | |- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) ) |
|
2 | bj-fvmptunsn.nel | |- ( ph -> -. C e. A ) |
|
3 | bj-fvmptunsn2.el | |- ( ph -> E e. A ) |
|
4 | bj-fvmptunsn2.ex | |- ( ph -> G e. V ) |
|
5 | bj-fvmptunsn2.is | |- ( ( ph /\ x = E ) -> B = G ) |
|
6 | nelneq | |- ( ( E e. A /\ -. C e. A ) -> -. E = C ) |
|
7 | 3 2 6 | syl2anc | |- ( ph -> -. E = C ) |
8 | 1 7 | bj-fununsn1 | |- ( ph -> ( F ` E ) = ( ( x e. A |-> B ) ` E ) ) |
9 | eqidd | |- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
|
10 | 9 5 3 4 | fvmptd | |- ( ph -> ( ( x e. A |-> B ) ` E ) = G ) |
11 | 8 10 | eqtrd | |- ( ph -> ( F ` E ) = G ) |