Metamath Proof Explorer


Theorem bj-fvmptunsn2

Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvmptunsn.un
|- ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) )
bj-fvmptunsn.nel
|- ( ph -> -. C e. A )
bj-fvmptunsn2.el
|- ( ph -> E e. A )
bj-fvmptunsn2.ex
|- ( ph -> G e. V )
bj-fvmptunsn2.is
|- ( ( ph /\ x = E ) -> B = G )
Assertion bj-fvmptunsn2
|- ( ph -> ( F ` E ) = G )

Proof

Step Hyp Ref Expression
1 bj-fvmptunsn.un
 |-  ( ph -> F = ( ( x e. A |-> B ) u. { <. C , D >. } ) )
2 bj-fvmptunsn.nel
 |-  ( ph -> -. C e. A )
3 bj-fvmptunsn2.el
 |-  ( ph -> E e. A )
4 bj-fvmptunsn2.ex
 |-  ( ph -> G e. V )
5 bj-fvmptunsn2.is
 |-  ( ( ph /\ x = E ) -> B = G )
6 nelneq
 |-  ( ( E e. A /\ -. C e. A ) -> -. E = C )
7 3 2 6 syl2anc
 |-  ( ph -> -. E = C )
8 1 7 bj-fununsn1
 |-  ( ph -> ( F ` E ) = ( ( x e. A |-> B ) ` E ) )
9 eqidd
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) )
10 9 5 3 4 fvmptd
 |-  ( ph -> ( ( x e. A |-> B ) ` E ) = G )
11 8 10 eqtrd
 |-  ( ph -> ( F ` E ) = G )