Metamath Proof Explorer


Theorem bj-grpssmndel

Description: Groups are monoids (elemental version). Shorter proof of grpmnd . (Contributed by BJ, 5-Jan-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-grpssmndel
|- ( A e. Grp -> A e. Mnd )

Proof

Step Hyp Ref Expression
1 bj-grpssmnd
 |-  Grp C_ Mnd
2 1 sseli
 |-  ( A e. Grp -> A e. Mnd )