Metamath Proof Explorer


Theorem bj-grpssmndel

Description: Groups are monoids (elemental version). Shorter proof of grpmnd . (Contributed by BJ, 5-Jan-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-grpssmndel ( 𝐴 ∈ Grp → 𝐴 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 bj-grpssmnd Grp ⊆ Mnd
2 1 sseli ( 𝐴 ∈ Grp → 𝐴 ∈ Mnd )