Description: A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-modald | |- ( A. x -. ph -> -. A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 | |- ( A. x ph -> E. x ph ) |
|
2 | df-ex | |- ( E. x ph <-> -. A. x -. ph ) |
|
3 | 1 2 | sylib | |- ( A. x ph -> -. A. x -. ph ) |
4 | 3 | con2i | |- ( A. x -. ph -> -. A. x ph ) |