Description: A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-modald | |- ( A. x -. ph -> -. A. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.2 | |- ( A. x ph -> E. x ph ) |
|
| 2 | df-ex | |- ( E. x ph <-> -. A. x -. ph ) |
|
| 3 | 1 2 | sylib | |- ( A. x ph -> -. A. x -. ph ) |
| 4 | 3 | con2i | |- ( A. x -. ph -> -. A. x ph ) |