Metamath Proof Explorer


Theorem bj-modald

Description: A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021)

Ref Expression
Assertion bj-modald ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 19.2 ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 )
2 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
3 1 2 sylib ( ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 ¬ 𝜑 )
4 3 con2i ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 )