Description: A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-modald | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 | ⊢ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
2 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
3 | 1 2 | sylib | ⊢ ( ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 ¬ 𝜑 ) |
4 | 3 | con2i | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |