Description: If two formulas are equivalent for all x , then nonfreeness of x in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi . (Contributed by BJ, 27-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-nnfbd.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | bj-nnfbd | |- ( ph -> ( F// x ps <-> F// x ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfbd.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ( ps <-> ch ) ) |
| 3 | bj-nnfbi | |- ( ( ( ps <-> ch ) /\ A. x ( ps <-> ch ) ) -> ( F// x ps <-> F// x ch ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( F// x ps <-> F// x ch ) ) |