Description: If two formulas are equivalent for all x , then nonfreeness of x in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi . (Contributed by BJ, 27-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-nnfbd.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | bj-nnfbd | |- ( ph -> ( F// x ps <-> F// x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnfbd.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ( ps <-> ch ) ) |
3 | bj-nnfbi | |- ( ( ( ps <-> ch ) /\ A. x ( ps <-> ch ) ) -> ( F// x ps <-> F// x ch ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( F// x ps <-> F// x ch ) ) |