Metamath Proof Explorer


Theorem bj-restv

Description: An elementwise intersection by a subset on a family containing the whole set contains the whole subset. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restv
|- ( ( A C_ U. X /\ U. X e. X ) -> A e. ( X |`t A ) )

Proof

Step Hyp Ref Expression
1 uniexr
 |-  ( U. X e. X -> X e. _V )
2 1 adantl
 |-  ( ( A C_ U. X /\ U. X e. X ) -> X e. _V )
3 bj-restb
 |-  ( X e. _V -> ( ( A C_ U. X /\ U. X e. X ) -> A e. ( X |`t A ) ) )
4 2 3 mpcom
 |-  ( ( A C_ U. X /\ U. X e. X ) -> A e. ( X |`t A ) )