Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A C_ B -> A C_ B ) |
2 |
|
ssidd |
|- ( A C_ B -> A C_ A ) |
3 |
1 2
|
ssind |
|- ( A C_ B -> A C_ ( B i^i A ) ) |
4 |
|
inss2 |
|- ( B i^i A ) C_ A |
5 |
4
|
a1i |
|- ( A C_ B -> ( B i^i A ) C_ A ) |
6 |
3 5
|
eqssd |
|- ( A C_ B -> A = ( B i^i A ) ) |
7 |
|
eleq1 |
|- ( y = B -> ( y e. X <-> B e. X ) ) |
8 |
|
ineq1 |
|- ( y = B -> ( y i^i A ) = ( B i^i A ) ) |
9 |
8
|
eqeq2d |
|- ( y = B -> ( A = ( y i^i A ) <-> A = ( B i^i A ) ) ) |
10 |
7 9
|
anbi12d |
|- ( y = B -> ( ( y e. X /\ A = ( y i^i A ) ) <-> ( B e. X /\ A = ( B i^i A ) ) ) ) |
11 |
10
|
spcegv |
|- ( B e. X -> ( ( B e. X /\ A = ( B i^i A ) ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) |
12 |
11
|
expd |
|- ( B e. X -> ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) ) |
13 |
12
|
pm2.43i |
|- ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) |
14 |
6 13
|
mpan9 |
|- ( ( A C_ B /\ B e. X ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) |
15 |
|
df-rex |
|- ( E. y e. X A = ( y i^i A ) <-> E. y ( y e. X /\ A = ( y i^i A ) ) ) |
16 |
14 15
|
sylibr |
|- ( ( A C_ B /\ B e. X ) -> E. y e. X A = ( y i^i A ) ) |
17 |
16
|
adantl |
|- ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> E. y e. X A = ( y i^i A ) ) |
18 |
|
ssexg |
|- ( ( A C_ B /\ B e. X ) -> A e. _V ) |
19 |
|
elrest |
|- ( ( X e. V /\ A e. _V ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) ) |
20 |
18 19
|
sylan2 |
|- ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) ) |
21 |
17 20
|
mpbird |
|- ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> A e. ( X |`t A ) ) |
22 |
21
|
ex |
|- ( X e. V -> ( ( A C_ B /\ B e. X ) -> A e. ( X |`t A ) ) ) |