Metamath Proof Explorer


Theorem bj-restb

Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restb
|- ( X e. V -> ( ( A C_ B /\ B e. X ) -> A e. ( X |`t A ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A C_ B -> A C_ B )
2 ssidd
 |-  ( A C_ B -> A C_ A )
3 1 2 ssind
 |-  ( A C_ B -> A C_ ( B i^i A ) )
4 inss2
 |-  ( B i^i A ) C_ A
5 4 a1i
 |-  ( A C_ B -> ( B i^i A ) C_ A )
6 3 5 eqssd
 |-  ( A C_ B -> A = ( B i^i A ) )
7 eleq1
 |-  ( y = B -> ( y e. X <-> B e. X ) )
8 ineq1
 |-  ( y = B -> ( y i^i A ) = ( B i^i A ) )
9 8 eqeq2d
 |-  ( y = B -> ( A = ( y i^i A ) <-> A = ( B i^i A ) ) )
10 7 9 anbi12d
 |-  ( y = B -> ( ( y e. X /\ A = ( y i^i A ) ) <-> ( B e. X /\ A = ( B i^i A ) ) ) )
11 10 spcegv
 |-  ( B e. X -> ( ( B e. X /\ A = ( B i^i A ) ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) )
12 11 expd
 |-  ( B e. X -> ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) )
13 12 pm2.43i
 |-  ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) )
14 6 13 mpan9
 |-  ( ( A C_ B /\ B e. X ) -> E. y ( y e. X /\ A = ( y i^i A ) ) )
15 df-rex
 |-  ( E. y e. X A = ( y i^i A ) <-> E. y ( y e. X /\ A = ( y i^i A ) ) )
16 14 15 sylibr
 |-  ( ( A C_ B /\ B e. X ) -> E. y e. X A = ( y i^i A ) )
17 16 adantl
 |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> E. y e. X A = ( y i^i A ) )
18 ssexg
 |-  ( ( A C_ B /\ B e. X ) -> A e. _V )
19 elrest
 |-  ( ( X e. V /\ A e. _V ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) )
20 18 19 sylan2
 |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) )
21 17 20 mpbird
 |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> A e. ( X |`t A ) )
22 21 ex
 |-  ( X e. V -> ( ( A C_ B /\ B e. X ) -> A e. ( X |`t A ) ) )