| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A C_ B -> A C_ B ) | 
						
							| 2 |  | ssidd |  |-  ( A C_ B -> A C_ A ) | 
						
							| 3 | 1 2 | ssind |  |-  ( A C_ B -> A C_ ( B i^i A ) ) | 
						
							| 4 |  | inss2 |  |-  ( B i^i A ) C_ A | 
						
							| 5 | 4 | a1i |  |-  ( A C_ B -> ( B i^i A ) C_ A ) | 
						
							| 6 | 3 5 | eqssd |  |-  ( A C_ B -> A = ( B i^i A ) ) | 
						
							| 7 |  | eleq1 |  |-  ( y = B -> ( y e. X <-> B e. X ) ) | 
						
							| 8 |  | ineq1 |  |-  ( y = B -> ( y i^i A ) = ( B i^i A ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( y = B -> ( A = ( y i^i A ) <-> A = ( B i^i A ) ) ) | 
						
							| 10 | 7 9 | anbi12d |  |-  ( y = B -> ( ( y e. X /\ A = ( y i^i A ) ) <-> ( B e. X /\ A = ( B i^i A ) ) ) ) | 
						
							| 11 | 10 | spcegv |  |-  ( B e. X -> ( ( B e. X /\ A = ( B i^i A ) ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) | 
						
							| 12 | 11 | expd |  |-  ( B e. X -> ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) ) | 
						
							| 13 | 12 | pm2.43i |  |-  ( B e. X -> ( A = ( B i^i A ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) ) | 
						
							| 14 | 6 13 | mpan9 |  |-  ( ( A C_ B /\ B e. X ) -> E. y ( y e. X /\ A = ( y i^i A ) ) ) | 
						
							| 15 |  | df-rex |  |-  ( E. y e. X A = ( y i^i A ) <-> E. y ( y e. X /\ A = ( y i^i A ) ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( A C_ B /\ B e. X ) -> E. y e. X A = ( y i^i A ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> E. y e. X A = ( y i^i A ) ) | 
						
							| 18 |  | ssexg |  |-  ( ( A C_ B /\ B e. X ) -> A e. _V ) | 
						
							| 19 |  | elrest |  |-  ( ( X e. V /\ A e. _V ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> ( A e. ( X |`t A ) <-> E. y e. X A = ( y i^i A ) ) ) | 
						
							| 21 | 17 20 | mpbird |  |-  ( ( X e. V /\ ( A C_ B /\ B e. X ) ) -> A e. ( X |`t A ) ) | 
						
							| 22 | 21 | ex |  |-  ( X e. V -> ( ( A C_ B /\ B e. X ) -> A e. ( X |`t A ) ) ) |