Metamath Proof Explorer


Theorem bj-restb

Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restb XVABBXAX𝑡A

Proof

Step Hyp Ref Expression
1 id ABAB
2 ssidd ABAA
3 1 2 ssind ABABA
4 inss2 BAA
5 4 a1i ABBAA
6 3 5 eqssd ABA=BA
7 eleq1 y=ByXBX
8 ineq1 y=ByA=BA
9 8 eqeq2d y=BA=yAA=BA
10 7 9 anbi12d y=ByXA=yABXA=BA
11 10 spcegv BXBXA=BAyyXA=yA
12 11 expd BXBXA=BAyyXA=yA
13 12 pm2.43i BXA=BAyyXA=yA
14 6 13 mpan9 ABBXyyXA=yA
15 df-rex yXA=yAyyXA=yA
16 14 15 sylibr ABBXyXA=yA
17 16 adantl XVABBXyXA=yA
18 ssexg ABBXAV
19 elrest XVAVAX𝑡AyXA=yA
20 18 19 sylan2 XVABBXAX𝑡AyXA=yA
21 17 20 mpbird XVABBXAX𝑡A
22 21 ex XVABBXAX𝑡A