| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | ssidd | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  𝐴 ) | 
						
							| 3 | 1 2 | ssind | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 4 |  | inss2 | ⊢ ( 𝐵  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐵  ∩  𝐴 )  ⊆  𝐴 ) | 
						
							| 6 | 3 5 | eqssd | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝑋  ↔  𝐵  ∈  𝑋 ) ) | 
						
							| 8 |  | ineq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  ( 𝑦  ∩  𝐴 )  ↔  𝐴  =  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) )  ↔  ( 𝐵  ∈  𝑋  ∧  𝐴  =  ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 11 | 10 | spcegv | ⊢ ( 𝐵  ∈  𝑋  →  ( ( 𝐵  ∈  𝑋  ∧  𝐴  =  ( 𝐵  ∩  𝐴 ) )  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) ) | 
						
							| 12 | 11 | expd | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( 𝐴  =  ( 𝐵  ∩  𝐴 )  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) ) ) | 
						
							| 13 | 12 | pm2.43i | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝐴  =  ( 𝐵  ∩  𝐴 )  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) ) | 
						
							| 14 | 6 13 | mpan9 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 )  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 15 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦  ∩  𝐴 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 ) )  →  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 18 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 19 |  | elrest | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  V )  →  ( 𝐴  ∈  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ∈  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 21 | 17 20 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 ) )  →  𝐴  ∈  ( 𝑋  ↾t  𝐴 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  ( 𝑋  ↾t  𝐴 ) ) ) |