Description: Lemma for substitution. Closed form of equsalvw and sbievw . (Contributed by BJ, 23-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sbievw | |- ( [ y / x ] ( ph <-> ps ) -> ( [ y / x ] ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 | |- ( [ y / x ] ( ph <-> ps ) <-> A. x ( x = y -> ( ph <-> ps ) ) ) |
|
| 2 | bj-sblem | |- ( A. x ( x = y -> ( ph <-> ps ) ) -> ( A. x ( x = y -> ph ) <-> ( E. x x = y -> ps ) ) ) |
|
| 3 | sb6 | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
|
| 4 | ax6ev | |- E. x x = y |
|
| 5 | 4 | a1bi | |- ( ps <-> ( E. x x = y -> ps ) ) |
| 6 | 2 3 5 | 3bitr4g | |- ( A. x ( x = y -> ( ph <-> ps ) ) -> ( [ y / x ] ph <-> ps ) ) |
| 7 | 1 6 | sylbi | |- ( [ y / x ] ( ph <-> ps ) -> ( [ y / x ] ph <-> ps ) ) |