Description: Version of sbie with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-sbievv.nfx | |- F/ x ps |
|
bj-sbievv.nfy | |- F/ y ph |
||
bj-sbievv.is | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | bj-sbievv | |- ( [ y / x ] ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbievv.nfx | |- F/ x ps |
|
2 | bj-sbievv.nfy | |- F/ y ph |
|
3 | bj-sbievv.is | |- ( x = y -> ( ph <-> ps ) ) |
|
4 | 2 | sb6f | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
5 | 1 3 | equsal | |- ( A. x ( x = y -> ph ) <-> ps ) |
6 | 4 5 | bitri | |- ( [ y / x ] ph <-> ps ) |