Description: Version of sbie with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-sbievv.nfx | |- F/ x ps | |
| bj-sbievv.nfy | |- F/ y ph | ||
| bj-sbievv.is | |- ( x = y -> ( ph <-> ps ) ) | ||
| Assertion | bj-sbievv | |- ( [ y / x ] ph <-> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-sbievv.nfx | |- F/ x ps | |
| 2 | bj-sbievv.nfy | |- F/ y ph | |
| 3 | bj-sbievv.is | |- ( x = y -> ( ph <-> ps ) ) | |
| 4 | 2 | sb6f | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) | 
| 5 | 1 3 | equsal | |- ( A. x ( x = y -> ph ) <-> ps ) | 
| 6 | 4 5 | bitri | |- ( [ y / x ] ph <-> ps ) |