Metamath Proof Explorer


Theorem bj-sbievv

Description: Version of sbie with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-sbievv.nfx
|- F/ x ps
bj-sbievv.nfy
|- F/ y ph
bj-sbievv.is
|- ( x = y -> ( ph <-> ps ) )
Assertion bj-sbievv
|- ( [ y / x ] ph <-> ps )

Proof

Step Hyp Ref Expression
1 bj-sbievv.nfx
 |-  F/ x ps
2 bj-sbievv.nfy
 |-  F/ y ph
3 bj-sbievv.is
 |-  ( x = y -> ( ph <-> ps ) )
4 2 sb6f
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
5 1 3 equsal
 |-  ( A. x ( x = y -> ph ) <-> ps )
6 4 5 bitri
 |-  ( [ y / x ] ph <-> ps )