Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ First-order logic First-order logic: miscellaneous bj-sbievv  
				
		 
		
			
		 
		Description:   Version of sbie  with a second nonfreeness hypothesis and shorter
       proof.  (Contributed by BJ , 18-Jul-2023) 
       (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						bj-sbievv.nfx ⊢  Ⅎ 𝑥  𝜓   
					
						bj-sbievv.nfy ⊢  Ⅎ 𝑦  𝜑   
					
						bj-sbievv.is ⊢  ( 𝑥   =  𝑦   →  ( 𝜑   ↔  𝜓  ) )  
				
					Assertion 
					bj-sbievv ⊢   ( [ 𝑦   /  𝑥  ] 𝜑   ↔  𝜓  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							bj-sbievv.nfx ⊢  Ⅎ 𝑥  𝜓   
						
							2 
								
							 
							bj-sbievv.nfy ⊢  Ⅎ 𝑦  𝜑   
						
							3 
								
							 
							bj-sbievv.is ⊢  ( 𝑥   =  𝑦   →  ( 𝜑   ↔  𝜓  ) )  
						
							4 
								2 
							 
							sb6f ⊢  ( [ 𝑦   /  𝑥  ] 𝜑   ↔  ∀ 𝑥  ( 𝑥   =  𝑦   →  𝜑  ) )  
						
							5 
								1  3 
							 
							equsal ⊢  ( ∀ 𝑥  ( 𝑥   =  𝑦   →  𝜑  )  ↔  𝜓  )  
						
							6 
								4  5 
							 
							bitri ⊢  ( [ 𝑦   /  𝑥  ] 𝜑   ↔  𝜓  )