Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-moeub | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
2 | euex | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
3 | impbi | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) ) | |
4 | 2 3 | mpi | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) |
5 | biimp | ⊢ ( ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
6 | 4 5 | impbii | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) |
7 | 1 6 | bitri | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) |