Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-moeub | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moeu | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
| 2 | euex | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
| 3 | impbi | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) ) | |
| 4 | 2 3 | mpi | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) | 
| 5 | biimp | ⊢ ( ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
| 6 | 4 5 | impbii | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) | 
| 7 | 1 6 | bitri | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) |