Metamath Proof Explorer


Theorem bj-moeub

Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)

Ref Expression
Assertion bj-moeub ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
2 euex ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 )
3 impbi ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) )
4 2 3 mpi ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )
5 biimp ( ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
6 4 5 impbii ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )
7 1 6 bitri ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )