Description: Obsolete proof of sbidm temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sbidmOLD | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 | ⊢ [ 𝑦 / 𝑥 ] 𝑦 = 𝑥 | |
2 | sbequ12r | ⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
3 | 2 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
4 | 1 3 | ax-mp | ⊢ [ 𝑦 / 𝑥 ] ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
5 | sbbi | ⊢ ( [ 𝑦 / 𝑥 ] ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
6 | 4 5 | mpbi | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |