Metamath Proof Explorer


Theorem bj-sbidmOLD

Description: Obsolete proof of sbidm temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-sbidmOLD
|- ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 equsb2
 |-  [ y / x ] y = x
2 sbequ12r
 |-  ( y = x -> ( [ y / x ] ph <-> ph ) )
3 2 sbimi
 |-  ( [ y / x ] y = x -> [ y / x ] ( [ y / x ] ph <-> ph ) )
4 1 3 ax-mp
 |-  [ y / x ] ( [ y / x ] ph <-> ph )
5 sbbi
 |-  ( [ y / x ] ( [ y / x ] ph <-> ph ) <-> ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph ) )
6 4 5 mpbi
 |-  ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph )