Description: Obsolete proof of sbidm temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sbidmOLD | |- ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 | |- [ y / x ] y = x |
|
2 | sbequ12r | |- ( y = x -> ( [ y / x ] ph <-> ph ) ) |
|
3 | 2 | sbimi | |- ( [ y / x ] y = x -> [ y / x ] ( [ y / x ] ph <-> ph ) ) |
4 | 1 3 | ax-mp | |- [ y / x ] ( [ y / x ] ph <-> ph ) |
5 | sbbi | |- ( [ y / x ] ( [ y / x ] ph <-> ph ) <-> ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph ) ) |
|
6 | 4 5 | mpbi | |- ( [ y / x ] [ y / x ] ph <-> [ y / x ] ph ) |