Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-moeub | |- ( E* x ph <-> ( E. x ph <-> E! x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu | |- ( E* x ph <-> ( E. x ph -> E! x ph ) ) |
|
2 | euex | |- ( E! x ph -> E. x ph ) |
|
3 | impbi | |- ( ( E. x ph -> E! x ph ) -> ( ( E! x ph -> E. x ph ) -> ( E. x ph <-> E! x ph ) ) ) |
|
4 | 2 3 | mpi | |- ( ( E. x ph -> E! x ph ) -> ( E. x ph <-> E! x ph ) ) |
5 | biimp | |- ( ( E. x ph <-> E! x ph ) -> ( E. x ph -> E! x ph ) ) |
|
6 | 4 5 | impbii | |- ( ( E. x ph -> E! x ph ) <-> ( E. x ph <-> E! x ph ) ) |
7 | 1 6 | bitri | |- ( E* x ph <-> ( E. x ph <-> E! x ph ) ) |