Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-moeub | |- ( E* x ph <-> ( E. x ph <-> E! x ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moeu | |- ( E* x ph <-> ( E. x ph -> E! x ph ) ) | |
| 2 | euex | |- ( E! x ph -> E. x ph ) | |
| 3 | impbi | |- ( ( E. x ph -> E! x ph ) -> ( ( E! x ph -> E. x ph ) -> ( E. x ph <-> E! x ph ) ) ) | |
| 4 | 2 3 | mpi | |- ( ( E. x ph -> E! x ph ) -> ( E. x ph <-> E! x ph ) ) | 
| 5 | biimp | |- ( ( E. x ph <-> E! x ph ) -> ( E. x ph -> E! x ph ) ) | |
| 6 | 4 5 | impbii | |- ( ( E. x ph -> E! x ph ) <-> ( E. x ph <-> E! x ph ) ) | 
| 7 | 1 6 | bitri | |- ( E* x ph <-> ( E. x ph <-> E! x ph ) ) |