Metamath Proof Explorer


Theorem bj-moeub

Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022)

Ref Expression
Assertion bj-moeub * x φ x φ ∃! x φ

Proof

Step Hyp Ref Expression
1 moeu * x φ x φ ∃! x φ
2 euex ∃! x φ x φ
3 impbi x φ ∃! x φ ∃! x φ x φ x φ ∃! x φ
4 2 3 mpi x φ ∃! x φ x φ ∃! x φ
5 biimp x φ ∃! x φ x φ ∃! x φ
6 4 5 impbii x φ ∃! x φ x φ ∃! x φ
7 1 6 bitri * x φ x φ ∃! x φ