Description: Lemma for substitution. Closed form of equsalvw and sbievw . (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sbievw | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) ) | |
2 | bj-sblem | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜓 ) ) ) | |
3 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) | |
4 | ax6ev | ⊢ ∃ 𝑥 𝑥 = 𝑦 | |
5 | 4 | a1bi | ⊢ ( 𝜓 ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜓 ) ) |
6 | 2 3 5 | 3bitr4g | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
7 | 1 6 | sylbi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |