Metamath Proof Explorer


Theorem bj-sblem

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sblem ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm5.74 ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )
2 1 albii ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )
3 albi ( ∀ 𝑥 ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜒 ) ) )
4 2 3 sylbi ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜒 ) ) )
5 19.23v ( ∀ 𝑥 ( 𝜑𝜒 ) ↔ ( ∃ 𝑥 𝜑𝜒 ) )
6 4 5 bitrdi ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜒 ) ) )