Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sblem | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74 | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
3 | albi | ⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜒 ) ) ) | |
4 | 2 3 | sylbi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜒 ) ) ) |
5 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) | |
6 | 4 5 | bitrdi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) ) |