Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
First-order logic: miscellaneous
bj-sblem
Next ⟩
bj-sbievw1
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-sblem
Description:
Lemma for substitution.
(Contributed by
BJ
, 23-Jul-2023)
Ref
Expression
Assertion
bj-sblem
⊢
∀
x
φ
→
ψ
↔
χ
→
∀
x
φ
→
ψ
↔
∃
x
φ
→
χ
Proof
Step
Hyp
Ref
Expression
1
pm5.74
⊢
φ
→
ψ
↔
χ
↔
φ
→
ψ
↔
φ
→
χ
2
1
albii
⊢
∀
x
φ
→
ψ
↔
χ
↔
∀
x
φ
→
ψ
↔
φ
→
χ
3
albi
⊢
∀
x
φ
→
ψ
↔
φ
→
χ
→
∀
x
φ
→
ψ
↔
∀
x
φ
→
χ
4
2
3
sylbi
⊢
∀
x
φ
→
ψ
↔
χ
→
∀
x
φ
→
ψ
↔
∀
x
φ
→
χ
5
19.23v
⊢
∀
x
φ
→
χ
↔
∃
x
φ
→
χ
6
4
5
bitrdi
⊢
∀
x
φ
→
ψ
↔
χ
→
∀
x
φ
→
ψ
↔
∃
x
φ
→
χ