Metamath Proof Explorer


Theorem bj-sblem2

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sblem2
|- ( A. x ( ph -> ( ch -> ps ) ) -> ( ( E. x ph -> ch ) -> A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 19.23v
 |-  ( A. x ( ph -> ch ) <-> ( E. x ph -> ch ) )
2 ax-2
 |-  ( ( ph -> ( ch -> ps ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) )
3 2 al2imi
 |-  ( A. x ( ph -> ( ch -> ps ) ) -> ( A. x ( ph -> ch ) -> A. x ( ph -> ps ) ) )
4 1 3 syl5bir
 |-  ( A. x ( ph -> ( ch -> ps ) ) -> ( ( E. x ph -> ch ) -> A. x ( ph -> ps ) ) )