Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sblem2 | |- ( A. x ( ph -> ( ch -> ps ) ) -> ( ( E. x ph -> ch ) -> A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v | |- ( A. x ( ph -> ch ) <-> ( E. x ph -> ch ) ) |
|
2 | ax-2 | |- ( ( ph -> ( ch -> ps ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) ) |
|
3 | 2 | al2imi | |- ( A. x ( ph -> ( ch -> ps ) ) -> ( A. x ( ph -> ch ) -> A. x ( ph -> ps ) ) ) |
4 | 1 3 | syl5bir | |- ( A. x ( ph -> ( ch -> ps ) ) -> ( ( E. x ph -> ch ) -> A. x ( ph -> ps ) ) ) |