Metamath Proof Explorer


Theorem bj-sblem2

Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sblem2 ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) → ( ( ∃ 𝑥 𝜑𝜒 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.23v ( ∀ 𝑥 ( 𝜑𝜒 ) ↔ ( ∃ 𝑥 𝜑𝜒 ) )
2 ax-2 ( ( 𝜑 → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜓 ) ) )
3 2 al2imi ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) → ( ∀ 𝑥 ( 𝜑𝜒 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
4 1 3 syl5bir ( ∀ 𝑥 ( 𝜑 → ( 𝜒𝜓 ) ) → ( ( ∃ 𝑥 𝜑𝜒 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )