Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sblem2 | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) → ( ( ∃ 𝑥 𝜑 → 𝜒 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( ∃ 𝑥 𝜑 → 𝜒 ) ) | |
2 | ax-2 | ⊢ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) | |
3 | 2 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜒 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
4 | 1 3 | syl5bir | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜒 → 𝜓 ) ) → ( ( ∃ 𝑥 𝜑 → 𝜒 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |