| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sb |
|- ( [ x / x ] ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |
| 2 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
| 3 |
2
|
imim2i |
|- ( ( y = x -> A. x ( x = y -> ph ) ) -> ( y = x -> ( x = y -> ph ) ) ) |
| 4 |
3
|
alimi |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> A. y ( y = x -> ( x = y -> ph ) ) ) |
| 5 |
|
pm2.21 |
|- ( -. y = x -> ( y = x -> ph ) ) |
| 6 |
|
equcomi |
|- ( y = x -> x = y ) |
| 7 |
6
|
imim1i |
|- ( ( x = y -> ph ) -> ( y = x -> ph ) ) |
| 8 |
5 7
|
ja |
|- ( ( y = x -> ( x = y -> ph ) ) -> ( y = x -> ph ) ) |
| 9 |
8
|
alimi |
|- ( A. y ( y = x -> ( x = y -> ph ) ) -> A. y ( y = x -> ph ) ) |
| 10 |
|
ax6ev |
|- E. y y = x |
| 11 |
|
19.23v |
|- ( A. y ( y = x -> ph ) <-> ( E. y y = x -> ph ) ) |
| 12 |
11
|
biimpi |
|- ( A. y ( y = x -> ph ) -> ( E. y y = x -> ph ) ) |
| 13 |
9 10 12
|
mpisyl |
|- ( A. y ( y = x -> ( x = y -> ph ) ) -> ph ) |
| 14 |
4 13
|
syl |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> ph ) |
| 15 |
1 14
|
sylbi |
|- ( [ x / x ] ph -> ph ) |