Metamath Proof Explorer


Theorem bj-sselpwuni

Description: Quantitative version of ssexg : a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024)

Ref Expression
Assertion bj-sselpwuni
|- ( ( A C_ B /\ B e. V ) -> A e. ~P U. V )

Proof

Step Hyp Ref Expression
1 ssexg
 |-  ( ( A C_ B /\ B e. V ) -> A e. _V )
2 ssuni
 |-  ( ( A C_ B /\ B e. V ) -> A C_ U. V )
3 1 2 elpwd
 |-  ( ( A C_ B /\ B e. V ) -> A e. ~P U. V )