Metamath Proof Explorer


Theorem bj-unirel

Description: Quantitative version of uniexr : if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024)

Ref Expression
Assertion bj-unirel
|- ( U. A e. V -> A e. ~P ~P U. V )

Proof

Step Hyp Ref Expression
1 pwuni
 |-  A C_ ~P U. A
2 pwel
 |-  ( U. A e. V -> ~P U. A e. ~P ~P U. V )
3 bj-sselpwuni
 |-  ( ( A C_ ~P U. A /\ ~P U. A e. ~P ~P U. V ) -> A e. ~P U. ~P ~P U. V )
4 1 2 3 sylancr
 |-  ( U. A e. V -> A e. ~P U. ~P ~P U. V )
5 unipw
 |-  U. ~P ~P U. V = ~P U. V
6 5 pweqi
 |-  ~P U. ~P ~P U. V = ~P ~P U. V
7 4 6 eleqtrdi
 |-  ( U. A e. V -> A e. ~P ~P U. V )