Description: Quantitative version of uniexr : if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-unirel | |- ( U. A e. V -> A e. ~P ~P U. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni | |- A C_ ~P U. A |
|
2 | pwel | |- ( U. A e. V -> ~P U. A e. ~P ~P U. V ) |
|
3 | bj-sselpwuni | |- ( ( A C_ ~P U. A /\ ~P U. A e. ~P ~P U. V ) -> A e. ~P U. ~P ~P U. V ) |
|
4 | 1 2 3 | sylancr | |- ( U. A e. V -> A e. ~P U. ~P ~P U. V ) |
5 | unipw | |- U. ~P ~P U. V = ~P U. V |
|
6 | 5 | pweqi | |- ~P U. ~P ~P U. V = ~P ~P U. V |
7 | 4 6 | eleqtrdi | |- ( U. A e. V -> A e. ~P ~P U. V ) |