| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpwi |  |-  ( A e. ~P B -> A C_ B ) | 
						
							| 2 |  | ssidd |  |-  ( A C_ B -> A C_ A ) | 
						
							| 3 |  | id |  |-  ( A C_ B -> A C_ B ) | 
						
							| 4 | 2 3 | ssind |  |-  ( A C_ B -> A C_ ( A i^i B ) ) | 
						
							| 5 |  | ssexg |  |-  ( ( A C_ ( A i^i B ) /\ ( A i^i B ) e. V ) -> A e. _V ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( A C_ B /\ ( A i^i B ) e. V ) -> A e. _V ) | 
						
							| 7 |  | elpwg |  |-  ( A e. _V -> ( A e. ~P B <-> A C_ B ) ) | 
						
							| 8 | 7 | biimparc |  |-  ( ( A C_ B /\ A e. _V ) -> A e. ~P B ) | 
						
							| 9 | 6 8 | syldan |  |-  ( ( A C_ B /\ ( A i^i B ) e. V ) -> A e. ~P B ) | 
						
							| 10 | 9 | expcom |  |-  ( ( A i^i B ) e. V -> ( A C_ B -> A e. ~P B ) ) | 
						
							| 11 | 1 10 | impbid2 |  |-  ( ( A i^i B ) e. V -> ( A e. ~P B <-> A C_ B ) ) |