| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpwi | ⊢ ( 𝐴  ∈  𝒫  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | ssidd | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  𝐴 ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 4 | 2 3 | ssind | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 5 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ( 𝐴  ∩  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 7 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 8 | 7 | biimparc | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ∈  V )  →  𝐴  ∈  𝒫  𝐵 ) | 
						
							| 9 | 6 8 | syldan | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐵 )  ∈  𝑉 )  →  𝐴  ∈  𝒫  𝐵 ) | 
						
							| 10 | 9 | expcom | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝑉  →  ( 𝐴  ⊆  𝐵  →  𝐴  ∈  𝒫  𝐵 ) ) | 
						
							| 11 | 1 10 | impbid2 | ⊢ ( ( 𝐴  ∩  𝐵 )  ∈  𝑉  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) ) |