Metamath Proof Explorer


Theorem bj-sylggt

Description: Stronger form of sylgt , closer to ax-2 . (Contributed by BJ, 30-Jul-2025)

Ref Expression
Assertion bj-sylggt
|- ( ( ph -> A. x ( ps -> ch ) ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) )

Proof

Step Hyp Ref Expression
1 alim
 |-  ( A. x ( ps -> ch ) -> ( A. x ps -> A. x ch ) )
2 1 imim3i
 |-  ( ( ph -> A. x ( ps -> ch ) ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) )